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Introduction4

Osteosarcoma is a malignant tumour that mostly affects the long bones before 20 years of age.5

Patients with high-grade osteosarcoma undergo several cytotoxic chemotherapy cycles before surgical6

intervention. This treatment consists of induction MAP chemotherapy (methotrexate [M], doxorubicin7

[A], cisplatin [P]) followed by surgical tumour removal or amputation, depending on the local tumour8

invasiveness.9

10

The fact that the past several decades brought only a minor improvement in osteosarcoma survival11

rates highlights the need for novel research directions. Cytotoxic chemotherapy is the main obstacle to12

prolongation of cancer survival because of its limited efficacy [1]. Furthermore, response to13

chemotherapy is inconsistent due to intratumoral and intertumoral heterogeneity. The shortfalls of14

existing cytotoxic therapies are difficult to overcome because novel and more efficient anti-cancer15

therapies are introduced very slowly. Another major drawback is our inability to assess16

chemosensitivity prior to treatment which leads to indiscriminate cytotoxic chemotherapy prescription17

and poor response of most tumours [2]. It is generally assumed that early prediction of chemotherapy18

response in osteosarcoma could lead to avoidance of ineffective treatments and the possible metastasis19

development in chemoresistant patients. Such patients should receive alternative options, such as20

experimental trial protocols or amputation [3]. Prediction of the chemotherapy response may thus21

improve survival by enabling precision treatments.22

23

Functional magnetic resonance imaging (MRI) methods provide significant predictive performance in24

osteosarcoma but with a delay after the start of chemotherapy [4], while molecular markers [2] such25

as tumour hypoxia-inducible factor 1 [5] and P-glycoprotein [6] were reported to deliver early26

chemosensitivity prediction in osteosarcoma. Because such molecular markers’ clinical usability27
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remains uncertain, the research increasingly focuses on the heterogeneity of tumour morphology as1

the tool for chemosensitivity classification [7]. Tumour macroscopic morphology acquired by MRI2

presents a rich source of heterogeneity information because it is shaped by the growth patterns of3

malignant cells and, ultimately, by the sum of molecular interactions within a tumour. Due to the4

complexity and irregularity of tumour morphology, its quantification is approached by computational5

analysis [8]. Fractal analysis has been proven useful in medicine for morphological quantification of6

irregular natural shapes. It is sensitive to size, texture, shape [9], morphological heterogeneity and7

morphological complexity of tumours [10].8

9

Based on the pressing need to improve the performance of osteosarcoma chemosensitivity prediction,10

this study optimises the analytical conditions and compares the predictive value of pretreatment MRI11

by use of fractal analysis, first-order statistics and osteosarcoma ROI geometry.12

13

14

Methods15

Subjects16

This noninterventional, retrospective and predictive study was approved by the Ethics committee of17

the School of Medicine at the University of Belgrade (#29/VI-4) and written informed consent was18

obtained from the subjects for this study. It is reported according to STROBE guidelines for cross-19

sectional studies. It conforms with The Code of Ethics of the World Medical Association (Declaration20

of Helsinki), printed in the British Medical Journal (18 July 1964) and its seventh revision in 2013.21

We received patient data by the pathology unit in a de-identified and recoded form without direct or22

indirect identifiers that could enable re-identification. In total, 292 consecutive patients with skeletal23

pain and tumour diagnosis were evaluated for eligibility. Of these, 71 were osteosarcoma, 49 Ewing24

sarcoma and 172 were other tumour types. Of the 71 osteosarcoma patients, four were excluded based25

on low-quality MRI or artefacts, while 13 were excluded because of the axial skeleton localisation in26

order to assemble a homogeneous long tubular bone group. Inclusion criteria comprised:27
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histopathologic diagnosis of primary osteosarcoma on tubular long bones and pre-chemotherapy MRI.1

Presentation of MRI artefacts, pathological fractures and missing data were the exclusion criteria. A2

chemotherapeutical response was evaluated based on Huvos grading by an expert pathologist with 223

years of experience. All patients received preoperative OsteoSa MAP therapeutic 3x3 weeks protocol.4

Thirty-five patients were male, aged 5-46 years (median=16) and 19 were female, 7-25 years5

(median=14). All patients were diagnosed and treated at the Institute for Oncology and Radiology and6

University Children’s Hospital. The sample size calculation was based on a pilot study including 227

patients and required 54 patients with six positive cases for the alpha=0.20, beta=0.20 and AUC effect8

size of 0.22/0.78 (MedCalc Software, Ostend, Belgium). The actual average significant AUC was9

0.22/0.78, for 54 patients, of which eight cases exerted the ≥95% chemotherapy-induced necrosis.10

11

MR Imaging and patient treatment12

T2-weighted fat-suppression MRI was performed by the 1.5-T Siemens Healthcare Magnetom Avanto13

Syngo MR B15 workstation by the standard clinical protocol [11], followed by an administration of14

preoperative OsteoSa MAP neoadjuvant chemotherapy (Doxorubicin/Adriamycin 75 mg/m2 +15

Cisplatin 100 mg/m2 + high-dose Methotrexate 12 g/m2, in 3x3-week cycles. Surgical removal of a16

tumour or amputation was subsequently performed, depending on the local tumour invasiveness of17

critical structures such as blood vessels and joints. Quantification of tumour cell necrosis in response18

to MAP chemotherapy was done by a pathologist with 18 years of experience in the evaluation of19

chemotherapy-induced necrosis. Patients with a good histologic response (>90% necrosis) were20

treated with three additional cycles of MAP. In comparison, patients with <90% necrosis were21

administered with three additional cycles of MAP supplemented with 14 gr/m2 high-dose Ifosfamide.22

23

ROI demarcation24

Images were exported from Kodak Carestream PACS Client Suite v10.2 in the TIFF 1920×108025

greyscale format and tumour areas manually cropped in Fiji/ImageJ [12] along the borders of26

individual tumours by the two staff radiologists with ten and sixteen years of experience in27
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musculoskeletal radiology (G.J.D and I.B., respectively). The observers were not made aware of the1

other observer’s segmentation results.2

The manual approach is still considered equal or more reliable in comparison to the automated3

segmentation [13]. ROIs were introduced in ImageJ software by the creation of ROI masks (“create4

mask” command), delineation of ROI (“create selection” command) and transfer of ROI selection to5

the original greyscale image (“restore selection” command) with grayscale tumour area on a white6

background (Figure 1a-c; 2a). Such ROI delineation was adequate for the calculation of ROI7

geometry features and pixel intensity statistics by the “measure” command, while fractal analysis by8

the FracLac plugin required the additional step of non-tumour background flooding with black RGB9

pixels by the “clear outside” command (Figure 2c). Such ROI demarcation for fractal analysis is10

based on the fact that FracLac only recognises grey pixels while colour RGB pixels are identified as11

background.12

13

Feature extraction14

ImageJ calculated three types of features:15

1.) The first order pixel intensity statistics: Mean intensity, Skewness, Kurtosis, Solidity, IntDen16

and RawIntDen.17

2.) Tumour geometry: Area, Perimeter, Width, Height, Major, Minor, Angle, Circularity, Feret,18

FeretX, FeretY, FeretAngle, MinFeret, Aspect ratio (AR) and Roundness.19

3.) Monofractal: FD̅B (average box-counting dimension for 12 different starting grid positions) ,20

SD for FDʙ (SD of FDB for 12 different starting grid positions), FDʙmin (minimal box-21

counting dimension over 12 different starting grid positions) , FDʙmax, FDʙ with highest r²22

(FDʙ value with the highest r2 over the FDʙ calculated for 12 different starting grid positions,23

where r2 refers to the regression line of the box count/size log plot), SE  for  FDʙ (SE for box24

fractal dimension calculated for 12 different grid positions), Y-INT  for  FDʙ (Y-intercept of25

the regression line of the box count/size log plot), FD̅ʍ (mass fractal dimension averaged26

over 12 grid positions) , SD  for  FDʍ (SD for mass fractal dimension), FDʍmin, FDʍmax, FDʍ27

with highest r², SE  for  FDʍ, Y-INT  for F Dʍ, FD͞ᵪ with highest r², SE  for  FD͞ᵪ, Y-INT  for 28
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FD͞ᵪ, lacunarity (), ′ (lacunarity averaged over 12 grid positions), min, max, CV  for  Λ₍ɢ₎1

(coefficient of variation of Λ₍ɢ₎ over 12 grid positions), and CV  for  Λ′₍ɢ₎.2

4.) Multifractal:  f() and Dq. F(α) is the local fractal dimension corresponding to the local3

exponent α, while Dq is the generalised dimension. These parameters were distorted by 2004

Q values, from -10 to +10 in 0.1 increments to produce multifractal spectra which indicate5

how the images behave at each distortion. Excel formulas were further used to calculate 166

additional multifractal features from multifractal spectra f(α) vs α and Dq vs q: Dqmax,7

Dqmin, f(α)max, f(α)min, f(), αf(α)max, αf(α)min, Dq(q=0), Dq(q=1) Dq(q=2), f(α)(q=0),8

f(α)(q=1), f(α)(q=2), min, max and Please find the detailed explanation for features9

that are most relevant for this study in the next subsection. We used the “differential box10

counting“ method for fractal analysis of greyscale images in FracLac plugin version 2016apr11

for ImageJ, as previously explained in full detail [8]. The grid consisted of boxes sized 5 -12

630 pixels in linear 3-pixel increments and it was moved to 12 different positions within an13

image or ROI. Figure 2d shows an example of a box counting grid within osteosarcoma ROI.14

15

Detailed explanation of fractal features which reached predictive significance16

Dqmax was calculated from the Dq vs q multifractal spectrum. Fractal dimension (FD) and lacunarity17

() of greyscale images were calculated based on the difference between the maximum and minimum18

pixel intensities δIi,j,ε within each individual box, at each box size ε. The transformation by adding 1 to19

the actual calculated pixel intensity difference was done to prevent zero values in later calculations20

(Equation 1). Y-INT  for  FDʙ is the Y-intercept (Equation 3) of the regression line for the box FD21

(Equation 2) where S stands for the log of box size, C = log of box count, n = number of box sizes and22

m = slope of the regression line for the box count/size log plot. Monofractal r² for FDʍ feature is the23

determination coefficient of the regression line in Equation 4.24

Iε = ∑ [1 + δIi,j,ε] (1)25

FDBgrey= lim
�→0

ln (��)
ln 1 �

= slope of the regression line (2)26
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Y-INT = �−� ���
�

(3)1

FDMgrey= lim
�→0

ln (���)
ln 1 �

= slope of the regression line (4)2

3

Grid positioning influences the result of a box count. For this reason, grids were placed in 12 different4

positions. SD for FDʍ was calculated as the standard deviation of FDM values for each of the 125

different grid positions (Equation 4). Parameters CV of Λ₍ɢ₎ and CV of Λ′₍ɢ₎ were calculated as6

coefficients of variation of Λ₍ɢ₎ and Λ′₍ɢ₎ obtained for each of the 12 different grid positions. Λ₍ɢ₎ is the7

average on each grid position of lacunarities () calculated for all box sizes (Equation 5). Λ′₍ɢ₎ is the8

slope of the λ vs. box size regression line [ln()+1 vs ln()] for each grid position (Equation 6). It thus9

reflects the coupling of λ with scale. Coefficient of variation of any feature over different grid10

positions reflects the heterogeneity of an image.11

() = (CV)² = (σ∕μ)² of differences in pixel intensities for each box size δɪ = (ɪmax - ɪmin+1) (5)12

�'(ɢ) = lim
�→0

ln (� � +1)
ln �

= slope of the regression line (6)13

14

Inter- and intraobserver agreement15

Interobserver agreement of ROI manual segmentation was evaluated by comparison of areas16

delineated by the two radiologists mentioned above (G.J.D and I.B.). Intraobserver reproducibility17

was estimated by the two separate segmentations performed by the same observer. The similarity18

between segmentations was estimated by the Dice similarity coefficient (DSC) which measures a19

spatial overlap of segmentations by considering the ROI intersection in images A and B, divided by20

the sum of ROI areas in A and B (Equation 7).21

DSC = 2 |A ∩ B|
|A| + |B|

(7)22

DSC calculation was performed by analysis of binarized images homogeneously flooded with black23

pixels in DSCImageCalc v1.2a software [14]. ROIs were subsequently homogeneously flood-filled24

with black pixels Binary images were produced by binarization of the greyscale (8-bit) images that25
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were used above for feature extraction. Binarization was performed by the following commands in1

Fiji/ImageJ software: setThreshold(0, 254); //print(i, mean) and run("Make Binary", "slice"). The ROI2

area of each image was subsequently flood-filled with black pixels by the Fiji/ImageJ commands:3

run("Analyze Particles...", "size=100-Infinity show=Masks clear include in situ"); run("Maximum...",4

"radius=70"); run("Minimum...", "radius=70").5

Statistical analysis6

Data were analysed in IBM SPSS software package v24 (IBM Corporation) and Stata/MP 13.07

(StataCorp, College Station). Values of the features mentioned in the previous subsection were8

averaged among the two images available for each of the three anatomical directions for each patient.9

The prognostic evaluation was performed by receiver operating characteristic (ROC) analysis and10

binary logistic regression, with the binary histologic response to chemotherapy as the outcome event.11

Areas under the ROC curves (AUCs) were calculated as a quantitative measure of discrimination12

efficiency, based on continuous feature values. Discrimination is the capability to stratify13

chemosensitive and chemoresistant tumours. AUC=0.5 represents chance discrimination, while14

AUC=0 and AUC=1 designate perfect discrimination. We performed AUC calculation by use of15

continuous feature values, while the binary logistic regression considered the values categorised by an16

optimal cutpoint. The bootstrap random resampling technique was applied for bias correction [15].17

This procedure tests model stability and reliability by estimating the bias and modification of the18

original AUC confidence intervals (95% CIs) and P-values, as previously explained in detail [15].19

The advantage of bootstrap over the split-sample cross-validation is that the entire dataset is used for20

model development. P≤0.05 was used as the significance threshold. Univariate and multivariate21

binary logistic regression were also supplemented by the bootstrap random resampling technique with22

10,000 bootstrap resamples (SPSS v24).23

24

25

Results26
27

The predictive model for chemotherapy response28
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The model included 54 osteosarcoma patients diagnosed and treated by the National Sarcoma1

Multidisciplinary Team during the 5-years 2010-2014. Thirty-two osteosarcoma were in the femur, 142

in the tibia, four in the fibula and four in the clavicula. Two expert radiologists selected the two most3

representative images with the largest tumour area in each of the three acquired MRI slice orientations4

(Figure 1, A-C), a total of six images per patient. The mean intraobserver DSC was 0.95, with a5

standard deviation (SD) of ±0.04 (maximum: 0.99; minimum: 0.84). In the comparison between6

Observer-1 and Observer-2, the mean interobserver DSC was 0.93, with a standard deviation (SD) of7

±0.04 (maximum: 0.99; minimum: 0.78).8

9

To establish the predictive consistency of image analysis features, analysis was performed in all three10

anatomical directions: horizontal (Figure 1A) which divides a body into upper-lower parts, frontal11

(front-back, (Figure 1B) and sagittal (left-right, Figure 1C).12

13
Figure 1. Examples of osteosarcoma MR images recorded in all three anatomical directions. (A)14
Horizontal, (B) frontal and (C) sagittal. Two characteristic images were analysed per each MRI slice15
orientation.16

Analyses were implemented without (Figure 2A, B) and with (Figure 2C, D) tumour ROI delineation.

Without ROI, fractal box counting was performed across entire images (Figure 2B), while with ROI,

box counting was limited to tumour areas (Figure 2D). The effect of irregular ROI boundaries on the

box-counting procedure was minimised by filling the background with colour RGB pixels which are

ignored by the performed greyscale fractal analysis (Figure 2C, D). The calculated feature values

were assessed for their predictive performance by use of the chemotherapy-induced tumour cell

necrosis as the endpoint event (Tables 1, 2 and 3; Figure 3).
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Figure 2. Demarcation of the regions of interest (ROIs) in osteosarcoma MR images. (A)
Example of an image without strict ROI delineation. The tumour area was in the 8-bit greyscale
format while the background was filled with white pixels. (B) Magnified image shows that fractal
analysis boxes were distributed throughout an image in the absence of ROI delineation. (C) Example
of the strict tumour ROI delineation achieved by filling the background outside of tumour area with
black RGB pixels. The area within tumour ROI was again in the 8-bit greyscale format. (D)
Magnified image shows how such ROI demarcation with RGB pixels limits the distribution of fractal
analysis boxes to the tumour area. This is because FracLac software only analyses grey pixels, while
colour RGB pixels are recognized as background.

Predictive performance of the demographic, MRI and clinicopathological parameters1

Age, gender, tumour area, tumour volume, metastasis and pain intensity before diagnosis (Table 1)2

did not associate significantly with the 95% chemotherapy-induced tumour necrosis based on the3

receiver operating characteristic (ROC) curve analysis (Table 1). This analysis was performed on4

continuous values except for gender and metastasis occurrence, which are intrinsically categorical5

parameters (Table 1). By categorizing continuous values with an optimal threshold, the tumour area6

reached significant predictive performance (Table 1; AUC=0.27, P<0.05), indicating that increased7

tumour area predicts higher chemoresistance. A significant predictive association was achieved for8

95% necrosis chemoresponsiveness but not for 80% and 90% (not shown).9

10
11
12
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Predictive performance of the tumour geometry, pixel intensity and fractal features11

The obtained feature values were averaged for the anatomical directions and axes: horizontal (short12

bone axis), frontal and sagittal (long bone axis) and among all three directions (Table 2). The tumour13

geometry and fractal features showed the optimal predictive association with the 95% necrosis rate14

(Table 2) in comparison to the 80% and 90% necrosis (not shown). The chemotherapy-response15

achieving 95% necrosis was in between the 90% threshold that is widely considered as treatment16

success and the pathologic complete response characterised by 100% necrosis [16]. Table 2 presents17

image analysis features which fulfilled our inclusion criterion for consistent predictive performance.18

Under this criterion, the feature needs to show significant predictive value either in the horizontal19

plane (short bone axis) or in both frontal and sagittal planes (long bone axis) by their unmanipulated20

continuous values. This inclusion criterion was based on the expectation that frontal and sagittal21

directions provide similar predictive performance because they both belong to bones’ long axis.22

23

24

25

Table 1. Demographic, MRI and clinicopathological features in the
prediction of chemotherapy response.
Classification Continuous Categorized

Gender
AUC - 0.38

95% CI - 0.15-0.61
P-value - 0.30

Age
AUC 0.57 0.69

95% CI 0.39-0.75 0.52-0.85
P-value 0.56 0.10

Area
AUC 0.37 0.27

95% CI 0.19-0.55 0.12-0.42
P-value 0.27 0.05

Volume
AUC 0.30 0.31

95% CI 0.12-0.48 0.12-0.50
P-value 0.10 0.11

Metastasis
AUC - 0.54

95% CI - 0.32-0.77
P-value - 0.71

Pain intensity
AUC 0.48 0.38

95% CI 0.25-0.72 0.15-0.61
P-value 0.90 0.30

Areas under the ROC curves (AUCs) were calculated by use of continuous or
categorised feature values, with 95% histological tumour cell necrosis as the
chemotherapy-response endpoint. Necrosis thresholds at 80% and 90% were also
evaluated but not indicated in the table due to their inferior predictive
performance. AUCs 95% confidence intervals (95% CI) were corrected by
bootstrap. Significant p-values ≤0.05 are marked in bold style.
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1

2

We emphasise the use of unmanipulated continuous values because their categorisation often3

introduces a bias. By analysis of images without ROI delineation, two monofractal features: Y-4

INT for Dʙ and r² for Dʍ satisfied the inclusion criterion (not shown). However, analysis within strictly5

delineated tumour ROI delivered six features satisfying the inclusion criterion, including monofractal:6

SD for FDʍ, CV for (ɢ) and CV for Λ′(ɢ), multifractal: Dqmax and tumour geometry: MinFeret and7

circularity (Table 2). The areas under the ROC curve (AUC) below 0.5 for Y-INT for Dʙ, r² for Dʍ,8

Table 2. Performance of the calculated features in the prediction of chemotherapy-response.

Classification
Horizontal

orientation

Frontal

orientatio

n

Sagittal

orientatio

n

Frontal/Sagitta

l average

Front./Sag./

Horiz.

average

Without ROI

Y-INT for FDʙ
AUC 0.31 0.24 0.27 0.26 0.24
95% CI 0.09-0.52 0.09-0.40 0.09-0.44 0.08-0.43 0.08-0.40
P-value 0.10 0.03 0.05 0.04 0.03

r² for FDʍ
AUC 0.34 0.23 0.27 0.21 0.24
95% CI 0.14-0.54 0.05-0.41 0.10-0.43 0.05-0.38 0.28-0.41
P-value 0.18 0.02 0.05 0.02 0.03
With ROI

Min. Feret
AUC 0.37 0.23 0.20 0.21 0.25
95% CI 0.15-0.55 0.06-0.41 0.06-0.35 0.06-0.38 0.08-0.41
P-value 0.21 0.03 0.01 0.02 0.03

Circularity
AUC 0.78 0.42 0.40 0.60 0.51
95% CI 0.63-0.94 0.21-0.63 0.16-0.59 0.36-0.84 0.25-0.71
P-value 0.01 0.50 0.39 0.42 0.94

SD  for FDʍ
AUC 0.68 0.76 0.73 0.85 0.83
95% CI 0.47-0.84 0.54-0.95 0.55-0.90 0.71-0.95 0.70-0.95
P-value 0.08 0.04 0.04 0.003 0.001

CV  for  Λ(ɢ)
AUC 0.68 0.78 0.75 0.76 0.77
95% CI 0.48-0.80 0.56-0.99 0.59-0.89 0.57-0.91 0.66-0.93
P-value 0.12 0.03 0.03 0.04 0.01

CV  for  Λ′(ɢ)
AUC 0.74 0.77 0.88 0.88 0.86
95% CI 0.55-0.96 0.63-0.92 0.79-0.98 0.77-1.0 0.71-0.97
P-value 0.04 0.03 0.001 0.001 0.001

Dqmax

AUC 0.21 0.54 0.44 0.36 0.39
95% CI 0.08-0.36 0.31-0.77 0.17-0.66 0.12-0.61 0.16-0.62
P-value 0.01 0.73 0.59 0.22 0.36

Areas under the ROC curves (AUCs) were calculated by use of the 95% histological tumour cell necrosis as the
chemotherapy-response endpoint and feature values calculated within tumour ROIs. Confidence intervals (95% CI) of
AUCs were corrected by bootstrap. Significant p-values ≤0.05 are marked in bold style.
HR: hazard ratio; CI: confidence interval; Y-INT for FDʙ: Y-axis intersection of the regression line for box FD; r² for FD:
determination coefficient for the regression line for mass FD;Min. Feret: minimum diameter; CV: coefficient of variation;
(ɢ): an average of λ values calculated for different box sizes; '(ɢ): the slope of the regression line for λ vs box size; SD:
standard deviation; FDM:mass fractal dimension; Dqmax: maximum of the generalized fractal dimension.
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MinFeret and Dqmax indicated that high values of these features associated with a poor histologic1

chemotherapy response (Table 2). Yet, SD for FDʍ, CV for (ɢ), CV for Λ′(ɢ) and circularity2

associated with a good histologic response by their AUC >0.5 (Table 2). The obtained predictive3

performance of the two independent features (Table 3) is illustrated in Figure 3A by showing how4

their raw numerical values separate good and poor responders and by AUC plots (Figure 3B).5

6
Identification of the predictively most7

relevant computational analysis features8

was accomplished by their adjustment for9

demographic, MRI and clinical10

parameters using the stepwise11

multivariate binary logistic regression12

analysis. CV for Λ′(ɢ) and circularity13

were thereby identified as the14

predictively independent image analysis features (Table 3). Their predictive performance is directly15

presented in Figure 3A, without any statistical arbitration, by simply showing how increasing16

numerical values of each feature separate good- and poor-chemotherapy responders. The predictive17

performance is also illustrated by ROC curves (Figure 3B), whereby the curve of CV for Λ′(ɢ) looks18

particularly convincing because it is far removed from the central no-discrimination line. A ROC19

curve is a graphical plot that illustrates the predictive ability of a binary classifier system, as its20

discrimination threshold changes. It is created by plotting the true positive rate or sensitivity, against21

the false positive rate (1-specificity) at various threshold settings.22

23

Table 3. Identification of the predictively non-redundant
features.

Classifier
P-
value

HR 95%CI

Age 0.001 6.1 x 1015 6.3 x 107 - 2.0 x 1017

CV for Λ′(ɢ) 0.001 3.2 x 1014 1.4 x 107 - 2.1 x 1016

Circularity 0.001 9.8 x 109 2.8 x 107 - 6.4 x 1011

Multivariate binary regression analysis was performed by the
inclusion of categorized values of demographic, MRI, clinical and
image analysis features obtained within tumour ROI.
Categorization of the continuous feature values was performed by
optimal cutpoints. The entry criterion was p≤0.10 achieved in ROC
analysis while the stay criterion was p<0.05 in the stepwise
multivariate binary logistic regression. P-values and 95%
confidence intervals were corrected by bootstrap.
HR: hazard ratio; CI: confidence interval; CV: coefficient of
variation; Λ′(G): the slope of the regression line for λ vs box size.
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1
Figure 3. Illustration of the obtained predictive performance. (A) Continuous values of the2
predictively independent features are ordered sequentially and aligned with the actual chemotherapy3
response. Black fields indicate patients with at least 95% necrosis response to cytotoxic Osteosa MAP4
chemotherapy. Ideal discrimination where AUC=1.0 is shown for orientation. Values for CV for Λ′(ɢ)5
and circularity were ordered from lowest (left) to highest (right). Thereby, increasing values of CV6
for Λ′(ɢ) and circularity indicate a better response to chemotherapy. (B) Receiver operating7
characteristic curves further reveal efficiency in discrimination between chemosensitive and8
chemoresistant tumours by continuous feature values of CV for '(ɢ) and circularity. Values are for9
the sagittal plane for of CV for Λ′(ɢ)while circularity values are for the horizontal plane. ROC10
analysis was performed by use of the 95% histological tumour cell necrosis as the chemotherapy-11
response endpoint and feature values calculated within tumour ROIs.12
ROC: Receiver operating characteristic.

13
14
15

Discussion16
17

Although tumour morphology is the obvious source of clues for chemotherapy response prediction [8],18

its investigation is still underexploited in radiological practice. We report that computational analysis19

of pretreatment T2-weighted MR images collected sufficient predictive clues to stratify osteosarcoma20

by their sensitivity to OsteoSa MAP chemotherapy. Such early chemosensitivity prediction is21

clinically highly relevant because it could improve survival by enabling individual adjustment of22

therapy protocols.23

24

The main monofractal features, fractal dimension (FD) and lacunarity ( did not provide any25

predictive value in this study. Instead, the predictive significance was reached by their derivatives: SD26

for FDM, CV for Λ₍ɢ₎, CV for Λ′₍ɢ₎, Y-INT for Dʙ and r² for Dʍ. The common trait for the features: SD for27
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FDM, CV for Λ₍ɢ₎ and CV for Λ′₍ɢ₎ was that they offered predictive value only if calculated within ROI1

boundaries. These features reflect the degree of variation for FD and  among the 12 different box-2

counting grid positions. We assume that high variation of FD and  reflects an increased3

morphological heterogeneity of a tumour. Consequently, based on the obtained results, decreased4

morphological heterogeneity (or increased homogeneity) of osteosarcoma predicted higher5

chemoresistance. This finding was in line with the previous report showing that low  was predictive6

of higher osteosarcoma chemoresistance [17]. CV for Λ′₍ɢ₎ achieved the best predictive performance by7

its AUC of 0.88, while the similar CV for Λ₍ɢ₎ only achieved an AUC of 0.78. The difference between8

Λ′₍ɢ₎ and Λ₍ɢ₎ is that  represents lacunarity ( averaged among all box sizes, while Λ′₍ɢ₎ represents9

the dependency of lacunarity  and the scale of measurement (box size). Λ′₍ɢ₎ is thus a more robust10

estimate of heterogeneity because it includes  as the intrinsic measure of heterogeneity and its11

dependency on box size as another heterogeneity sensor (Λ′₍ɢ₎). Furthermore, the coefficient of12

variation of a parameter calculated for different grid positions also reflects the heterogeneity of an13

image. Taken together, the excellent predictive performance of CV for Λ′₍ɢ₎ could be explained by its14

incorporation of the three measures of morphological heterogeneity.15

16

Other predictive clues identified in this study include complexity, as measured by Y-INT for Dʙ and17

fractality, based on r² for Dʍ, whereby increased structural complexity and fractality predicted higher18

chemoresistance. It is important to note that fractality estimation by r² for Dʍ refers to restricted self-19

similarity defined as unchanging complexity among all scales and not to the structural self-similarity20

as in mathematical fractals [10]. To our knowledge, the above fractal features have never been21

employed in the study of medical images for predictive or prognostic purposes. Therefore, although22

most studies focus on FD and  [7, 17, 18], our current results provide an example of how the depth23

of analysis benefits the clinical relevance of medical images.24

25

Fractal features are very abstract due to their complex calculation. We therefore also calculated the26

simple tumour ROI geometry to find that increasing values of size descriptors tumour area and min.27
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feret (minimum diameter) significantly indicated higher chemoresistance. This was consistent with1

previous reports that increased tumour size prognosticated poor outcome for osteosarcoma [19].2

Furthermore, higher tumour circularity indicated higher chemosensitivity in the current study. Shape3

biomarkers have not been previously investigated in osteosarcoma, possibly because growth and4

shape are by far more restricted for bone tumours than for tumours growing in soft tissues. However,5

shape descriptors have been rarely investigated even in soft tissue tumours, therefore, the association6

between tumour circularity and chemosensitivity has not been directly investigated in any tumour type.7

Higher tumour circularity was reported to associate with increased Ki67 staining in breast cancer [20],8

implying that the higher proliferation rate of circular tumours might explain their increased sensitivity9

to cytotoxic chemotherapy. Our result showing the predictive value of osteosarcoma circularity thus10

points to the need for closer investigation of the tumour shape descriptors in the prognosis of disease11

outcome and prediction of chemoresponsiveness.12

13

Dqmax was the only multifractal feature providing predictively significant performance. Remarkably,14

its predictive significance was achieved in the short bone axis, while the six monofractal features15

consistently achieved their predictive performance only in the long bone axis. By its AUC of 0.21,16

Dqmax was inferior to the best performing monofractal CV for Λ′₍ɢ₎. The fact that monofractal analysis17

provided better predictive performance than multifractal analysis was surprising because multifractals18

were particularly designed for investigation of unevenly distributed complexity in irregular natural19

forms by calculating both global Dq and local f(α) dimensions. On the other hand, the monofractal20

analysis only calculates the global fractal dimension (FD). The multifractal analysis also collects21

richer structural information by calculation of Dq and f() for each of the 200 values of the distortion22

factor q [9, 21]. It is therefore remarkable that of the 16 multifractal features calculated in this study,23

the global Dqmax, but not the local f(α) dimensions, achieved predictive significance.24

25

We report the importance of tumour ROI delineation for the predictive performance of osteosarcoma26

MR image analysis. The advantage of analysis within ROI boundaries is in the strict focus on the27

relevant tumour area with the possible downside that irregular ROI boundaries influence the box28
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counting fractal analysis. We made an effort to minimise this edge effect by filling the background1

outside of ROI with RGB pixels which are not recognised by the used software and thus cannot2

influence the box counting procedure. Furthermore, we also avoided the edge effect by analysis across3

entire images and by calculation of the pixel statistics and tumour morphological features that are not4

affected by irregular tumour boundaries. Therefore, the finding that analysis within strict limits of5

tumour ROIs still offered the best predictive performance was interesting and suggested that the box6

counting error may be limited by the relatively small number of boxes at the ROI boundary.7

Nevertheless, the AUCs of 0.21 and 0.26 achieved in images without delineated ROI by r² for Dʍ and8

Y-INT for Dʙ features were inferior but remained in the good range (0.7-0.8 or 0.2-0.3). We explain9

this good predictive performance by the fact that images without ROI still emphasised the tumour area10

because the tissue structure surrounding osteosarcoma was removed by replacement with white pixels11

whose number inevitably depended on tumour size. Therefore, the values of r² for Dʍ and Y-INT for Dʙ12

might have been influenced not only by the grey pixels in the tumour and white pixels in the13

background but also by tumour area, the feature which showed predictive significance in this patient14

group. Besides such pronounced tolerance to the mode of ROI delineation, the robustness of the15

performed MR image analysis was further potentiated by the finding that chemosensitivity prediction16

could be obtained by different types of image analysis algorithms ranging from the sophisticated17

fractal analysis to the simple tumour geometry and pixel intensity statistics.18

19

With its best predictive AUC of 0.88, the current study surpassed the early predictive discrimination20

(AUC=0.57, p=0.32) reported for the 18F-FDG PET and MRI functional imaging [22] and the later21

similar study reaching an AUC value of 0.82 [23], while fractal analysis of T2-weighted MRI reached22

the predictive AUC of 0.20 (an equivalent of 0.80) [17]. The achieved predictive performance is23

important because the reliability of discrimination between the responders and non-responders is24

essential for the introduction of the personalisation of cytotoxic chemotherapy in routine clinical25

practice. For orientation, AUC values span from 0.5 (chance discrimination) to 1.0 or 0.0 (perfect26

discrimination), while 0.6 or 0.4 are considered as fair, 0.7 or 0.3 as good, 0.8 or 0.2 as excellent and27

0.9 or 0.1 as almost perfect discrimination.28
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Advantages of this study include an internal validation performed by bootstrap, which suggested that1

the model is generalisable. To improve the reliability of predictive estimates, we also performed2

separate analysis in the three anatomical directions, in addition to standard statistical analysis. This3

has enabled us to establish the predictive consistency for each calculated feature. Another advantage4

was that predictive evaluation based on ROC analysis considers continuous data values, without any5

need for data categorisation, which often introduces a bias. Benefits further include optimisation of6

ROI delineation, calculation and comparison of diverse features and analysis of greyscale instead of7

binary images. Moreover, the computational analysis of routinely collected MRI provides remarkable8

cost-effectiveness.9

10

Limitations11

Although the group size of 54 patients satisfied the sample size requirement and the patient group was12

highly homogenised, the patient number was nevertheless a limitation. This was due to the low13

osteosarcoma annual incidence rate of ~3 cases per million inhabitants. Another limitation of the14

predictive model used in this study was its retrospective design. Additional studies in external and15

extended patient groups are needed to further characterise the clinical validity of the reported16

approach in the prediction of osteosarcoma chemoresponsiveness.17

Although the computational analysis enables an objective description of irregular tumour morphology,18

feature values are calculated in areas that are segmented subjectively, to the best knowledge of a19

radiologist, or by use of software that is also not certain to deliver an ideal ROI demarcation.20

Therefore, ROI segmentation is one of the most critical phases of the computational analysis of MR21

images. Our assessment of the intra- and interobserver manual segmentation reproducibility showed22

high reliability, in line with the previous single report of osteosarcoma segmentation [13]. However,23

ROI demarcation remains the limitation of this type of MRI analysis.24

25

26

27
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Conclusions1

In this study, we provide improvement of osteosarcoma chemoresponsiveness prediction by2

optimisation of the computational MRI analysis. Reliable prediction of chemoresponsiveness is3

essential for gaining survival benefits by precision treatment of chemoresistant tumours with4

alternative options, such as experimental trial protocols or amputation. The proposed methodology5

outperforms the previously obtained prediction performance. We also quantified the benefit of tumour6

ROI demarcation and identified the clues predictive of osteosarcoma chemoresponsiveness as tumour7

circularity, diameter, complexity, homogeneity and fractality. The early prediction of the8

chemotherapy response has an application potential in routine clinical practice to optimise therapeutic9

protocols for each osteosarcoma patient.10

11

12

 Future perspective13

Studies in larger and external patient cohorts are needed to confirm the findings pointing14

to the value of fractal MRI analysis in early prediction of osteosarcoma responsiveness to15

cytotoxic chemotherapy. We expect that this approach could be subsequently included in16

routine clinical practice to improve personalised treatments and thus avoid unnecessary17

treatment of chemoresistant patients.18

19

20

21
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