Conference paper Open Access

Canary Numbers: Design for Light-weight Online Testability of True Random Number Generators

Rozic, Vladimir; Yang, Bohan; Mentens, Nele; Verbauwhede, Ingrid


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <controlfield tag="005">20200120145050.0</controlfield>
  <datafield tag="500" ind1=" " ind2=" ">
    <subfield code="a">H2020 644052 / HECTOR</subfield>
  </datafield>
  <controlfield tag="001">56625</controlfield>
  <datafield tag="711" ind1=" " ind2=" ">
    <subfield code="d">2-3 May 2016</subfield>
    <subfield code="g">NIST RBG Workshop</subfield>
    <subfield code="a">Random Bit Generation Workshop 2016</subfield>
    <subfield code="c">Gaithersburg, USA</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">KU Leuven</subfield>
    <subfield code="a">Yang, Bohan</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">KU Leuven</subfield>
    <subfield code="a">Mentens,  Nele</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">KU Leuven</subfield>
    <subfield code="a">Verbauwhede, Ingrid</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">310881</subfield>
    <subfield code="z">md5:704d34504aa0772f39d4cc7eaf241d41</subfield>
    <subfield code="u">https://zenodo.org/record/56625/files/HECTOR-Canary-numbers-design-light-weight-2016.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="y">Conference website</subfield>
    <subfield code="u">http://www.nist.gov/itl/csd/ct/rbg_workshop2016.cfm</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2016-06-07</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-hector</subfield>
    <subfield code="o">oai:zenodo.org:56625</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">KU Leuven</subfield>
    <subfield code="a">Rozic, Vladimir</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Canary Numbers: Design for Light-weight Online Testability of True Random Number Generators</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-hector</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution Non Commercial Share Alike 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;We introduce the concept of canary numbers, to be used in health tests for true random number generators. Health tests are essential components of true random number generators because they are used to detect defects and failures of the entropy source. These tests need to be lightweight, low-latency and highly reliable. The proposed solution uses canary numbers which are an extra output of the entropy source of lower quality. This enables an early-warning attack detection before the output of the generator is compromised. We illustrate the idea with 2 case studies of true random number generators implemented on aXilinx Spartan-6 FPGA.&lt;br&gt;
 &lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.56625</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">conferencepaper</subfield>
  </datafield>
</record>
35
21
views
downloads
All versions This version
Views 3535
Downloads 2121
Data volume 6.5 MB6.5 MB
Unique views 3535
Unique downloads 2121

Share

Cite as