Conference paper Open Access

Towards a Professional Gesture Recognition with RGB-D from Smartphone

Monivar, Pablo Vicente; Manitsaris, Sotiris; Glushkova, Alina


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <controlfield tag="005">20211114161818.0</controlfield>
  <controlfield tag="001">5658483</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Centre for Robotics, MINES ParisTech, PSL Université</subfield>
    <subfield code="a">Manitsaris, Sotiris</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Centre for Robotics, MINES ParisTech, PSL Université</subfield>
    <subfield code="a">Glushkova, Alina</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">2534940</subfield>
    <subfield code="z">md5:f8e0f320f11ed9fd04d0f045a73d007a</subfield>
    <subfield code="u">https://zenodo.org/record/5658483/files/ICVS_Paper VFinal.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2020-03-30</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-collaborate_project</subfield>
    <subfield code="p">user-mingei-h2020</subfield>
    <subfield code="o">oai:zenodo.org:5658483</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Centre for Robotics, MINES ParisTech, PSL Université</subfield>
    <subfield code="a">Monivar, Pablo Vicente</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Towards a Professional Gesture Recognition with RGB-D from Smartphone</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-collaborate_project</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-mingei-h2020</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">822336</subfield>
    <subfield code="a">Representation and Preservation of Heritage Crafts</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">820767</subfield>
    <subfield code="a">Co-production CeLL performing Human-Robot Collaborative AssEmbly</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Abstract. The goal of this work is to build the basis for a smartphone application that provides functionalities for recording human motion data, train machine learning algorithms and recognize professional gestures. First, we take advantage of the new mobile phone cameras, either infrared or stereoscopic, to record RGB-D data. Then, a bottom-up pose estimation algorithm based on Deep Learning extracts the 2D human skeleton and exports the 3rd dimension using the depth. Finally, we use a gesture recognition engine, which is based on K-means and Hidden Markov Models (HMMs). The performance of the machine learning algorithm has been tested with professional gestures using a silk-weaving and a TV-assembly datasets.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.1007/978-3-030-34995-0_22</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">conferencepaper</subfield>
  </datafield>
</record>
57
57
views
downloads
Views 57
Downloads 57
Data volume 144.5 MB
Unique views 45
Unique downloads 55

Share

Cite as