Conference paper Open Access

Towards a Professional Gesture Recognition with RGB-D from Smartphone

Monivar, Pablo Vicente; Manitsaris, Sotiris; Glushkova, Alina

Dublin Core Export

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="" xmlns:oai_dc="" xmlns:xsi="" xsi:schemaLocation="">
  <dc:creator>Monivar, Pablo Vicente</dc:creator>
  <dc:creator>Manitsaris, Sotiris</dc:creator>
  <dc:creator>Glushkova, Alina</dc:creator>
  <dc:description>Abstract. The goal of this work is to build the basis for a smartphone application that provides functionalities for recording human motion data, train machine learning algorithms and recognize professional gestures. First, we take advantage of the new mobile phone cameras, either infrared or stereoscopic, to record RGB-D data. Then, a bottom-up pose estimation algorithm based on Deep Learning extracts the 2D human skeleton and exports the 3rd dimension using the depth. Finally, we use a gesture recognition engine, which is based on K-means and Hidden Markov Models (HMMs). The performance of the machine learning algorithm has been tested with professional gestures using a silk-weaving and a TV-assembly datasets.</dc:description>
  <dc:title>Towards a Professional Gesture Recognition with RGB-D from Smartphone</dc:title>
Views 57
Downloads 57
Data volume 144.5 MB
Unique views 45
Unique downloads 55


Cite as