Conference paper Open Access

Towards a Professional Gesture Recognition with RGB-D from Smartphone

Monivar, Pablo Vicente; Manitsaris, Sotiris; Glushkova, Alina


DCAT Export

<?xml version='1.0' encoding='utf-8'?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:adms="http://www.w3.org/ns/adms#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dct="http://purl.org/dc/terms/" xmlns:dctype="http://purl.org/dc/dcmitype/" xmlns:dcat="http://www.w3.org/ns/dcat#" xmlns:duv="http://www.w3.org/ns/duv#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:frapo="http://purl.org/cerif/frapo/" xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#" xmlns:gsp="http://www.opengis.net/ont/geosparql#" xmlns:locn="http://www.w3.org/ns/locn#" xmlns:org="http://www.w3.org/ns/org#" xmlns:owl="http://www.w3.org/2002/07/owl#" xmlns:prov="http://www.w3.org/ns/prov#" xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" xmlns:schema="http://schema.org/" xmlns:skos="http://www.w3.org/2004/02/skos/core#" xmlns:vcard="http://www.w3.org/2006/vcard/ns#" xmlns:wdrs="http://www.w3.org/2007/05/powder-s#">
  <rdf:Description rdf:about="https://zenodo.org/record/5658483">
    <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://zenodo.org/record/5658483</dct:identifier>
    <foaf:page rdf:resource="https://zenodo.org/record/5658483"/>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Monivar, Pablo Vicente</foaf:name>
        <foaf:givenName>Pablo Vicente</foaf:givenName>
        <foaf:familyName>Monivar</foaf:familyName>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Centre for Robotics, MINES ParisTech, PSL Université</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Manitsaris, Sotiris</foaf:name>
        <foaf:givenName>Sotiris</foaf:givenName>
        <foaf:familyName>Manitsaris</foaf:familyName>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Centre for Robotics, MINES ParisTech, PSL Université</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Glushkova, Alina</foaf:name>
        <foaf:givenName>Alina</foaf:givenName>
        <foaf:familyName>Glushkova</foaf:familyName>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Centre for Robotics, MINES ParisTech, PSL Université</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:title>Towards a Professional Gesture Recognition with RGB-D from Smartphone</dct:title>
    <dct:publisher>
      <foaf:Agent>
        <foaf:name>Zenodo</foaf:name>
      </foaf:Agent>
    </dct:publisher>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#gYear">2020</dct:issued>
    <frapo:isFundedBy rdf:resource="info:eu-repo/grantAgreement/EC/H2020/822336/"/>
    <schema:funder>
      <foaf:Organization>
        <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">10.13039/100010661</dct:identifier>
        <foaf:name>European Commission</foaf:name>
      </foaf:Organization>
    </schema:funder>
    <frapo:isFundedBy rdf:resource="info:eu-repo/grantAgreement/EC/H2020/820767/"/>
    <schema:funder>
      <foaf:Organization>
        <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">10.13039/100010661</dct:identifier>
        <foaf:name>European Commission</foaf:name>
      </foaf:Organization>
    </schema:funder>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#date">2020-03-30</dct:issued>
    <owl:sameAs rdf:resource="https://zenodo.org/record/5658483"/>
    <adms:identifier>
      <adms:Identifier>
        <skos:notation rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://zenodo.org/record/5658483</skos:notation>
        <adms:schemeAgency>url</adms:schemeAgency>
      </adms:Identifier>
    </adms:identifier>
    <owl:sameAs rdf:resource="https://doi.org/10.1007/978-3-030-34995-0_22"/>
    <dct:isPartOf rdf:resource="https://zenodo.org/communities/collaborate_project"/>
    <dct:isPartOf rdf:resource="https://zenodo.org/communities/mingei-h2020"/>
    <dct:description>&lt;p&gt;Abstract. The goal of this work is to build the basis for a smartphone application that provides functionalities for recording human motion data, train machine learning algorithms and recognize professional gestures. First, we take advantage of the new mobile phone cameras, either infrared or stereoscopic, to record RGB-D data. Then, a bottom-up pose estimation algorithm based on Deep Learning extracts the 2D human skeleton and exports the 3rd dimension using the depth. Finally, we use a gesture recognition engine, which is based on K-means and Hidden Markov Models (HMMs). The performance of the machine learning algorithm has been tested with professional gestures using a silk-weaving and a TV-assembly datasets.&lt;/p&gt;</dct:description>
    <dct:accessRights rdf:resource="http://publications.europa.eu/resource/authority/access-right/PUBLIC"/>
    <dct:accessRights>
      <dct:RightsStatement rdf:about="info:eu-repo/semantics/openAccess">
        <rdfs:label>Open Access</rdfs:label>
      </dct:RightsStatement>
    </dct:accessRights>
    <dct:license rdf:resource="https://creativecommons.org/licenses/by/4.0/legalcode"/>
    <dcat:distribution>
      <dcat:Distribution>
        <dcat:accessURL rdf:resource="https://doi.org/10.1007/978-3-030-34995-0_22"/>
        <dcat:byteSize>2534940</dcat:byteSize>
        <dcat:downloadURL rdf:resource="https://zenodo.org/record/5658483/files/ICVS_Paper VFinal.pdf"/>
        <dcat:mediaType>application/pdf</dcat:mediaType>
      </dcat:Distribution>
    </dcat:distribution>
  </rdf:Description>
  <foaf:Project rdf:about="info:eu-repo/grantAgreement/EC/H2020/822336/">
    <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">822336</dct:identifier>
    <dct:title>Representation and Preservation of Heritage Crafts</dct:title>
    <frapo:isAwardedBy>
      <foaf:Organization>
        <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">10.13039/100010661</dct:identifier>
        <foaf:name>European Commission</foaf:name>
      </foaf:Organization>
    </frapo:isAwardedBy>
  </foaf:Project>
  <foaf:Project rdf:about="info:eu-repo/grantAgreement/EC/H2020/820767/">
    <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">820767</dct:identifier>
    <dct:title>Co-production CeLL performing Human-Robot Collaborative AssEmbly</dct:title>
    <frapo:isAwardedBy>
      <foaf:Organization>
        <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">10.13039/100010661</dct:identifier>
        <foaf:name>European Commission</foaf:name>
      </foaf:Organization>
    </frapo:isAwardedBy>
  </foaf:Project>
</rdf:RDF>
57
57
views
downloads
Views 57
Downloads 57
Data volume 144.5 MB
Unique views 45
Unique downloads 55

Share

Cite as