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1 Introduction

We consider the problem of finding a minimizer of the smooth real-valued function
f : Rn → R

min
x∈Rn

f(x), (1)

where f is known only by a noisy oracle which, for a given x ∈ Rn, gives an approx-
imation f̃(x) to the exact function value f(x), contaminated by noise. This problem
is called the noisy black box optimization problem, NBBOP. We denote by g(x) the
unknown exact gradient vector of f at x and by g̃(x) its approximation, and by
B(x) the Hessian matrix of f at x and by B̃(x) its approximation. The algorithm
uses no knowledge of g, the Lipschitz constants of f , the structure of f , and the
statistical properties of the noise. The noise may be deterministic (caused by mod-
elling, truncation, and/or discretization errors) or stochastic (caused by inaccurate
measurements or rounding errors).

A complexity bound of an algorithm for NBBOP is an upper bound on the number
of function evaluations to find an approximate point near the local optimizer whose
unknown exact gradient norm is below a given fixed threshold ω > 0 (which is
unknown to us but appears in our complexity bound) and whose function value is as
small as possible compared to the initial function value. In practice, such a point is
unknown because the Lipschitz constants and gradients are unknown. However, the
function value of this point is equal to or better than a point whose gradient is small
only near a global optimizer. To obtain such a complexity bound, one assumes that
the noise is bounded by

|f̃(x)− f(x)| ≤ ω. (2)

To determine which solvers are competitive for NBBOP, two main tools are used:
robustness (highest number of problems solved) and efficiency (lowest relative
cost of function evaluations). The data profile of Moré & Wild [32] and the per-
formance profile of Dolan & Moré [14] are used to compare these solvers in terms
of robustness and efficiency, respectively. A solver with the highest number of solved
problems is called robust and with the lowest relative cost of function evaluations
is called efficient.

1.1 Related work

There are many efficient and robust methods for NBBOP. Larson et al. [28] have
discussed these methods and their complexity bounds (if any). These methods are
based on line search, direct search, model-based, etc. and are either deterministic or
randomized or both. We here focus on
• line search methods, e.g., see [28, Section 2.3.4] ( Grippo & Rinaldi [20], Grippo
& Sciandrone [21], Lucidi & Sciandrone [30], and Neumaier et al. [33]),
• model-based methods, e.g., see [28, Section 2.2] (Bandeira et al. [3], Buhmann
[8], Conn & Toint [10], Gratton et al. [17,18], Gratton et al. [19], Powell
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[35,36], Huyer & Neumaier [24], and Wild et al. [40]),
• randomized methods, e.g., see [28, Section 3.2] (Audet & Dennis [1], Bandeira
et al. [3], Diniz-Ehrhardt et al. [13], Gratton et al. [17,18], and Van Dyke &
Asaki [39]).

Two good references for studying the efficiency and robustness of these solvers are
Rios & Sahinidis [37] and Kimiaei & Neumaier [27]. As a result of their numer-
ical results, some efficient and robust solvers are:
• Line search: VRBBO (randomized) by Kimiaei & Neumaier [27], SDBOX (de-
terministic) by Lucidi & Sciandrone [30], FMINUNC (Wolfe conditions along
standard BFGS directions) by Matlab Optimization Toolbox.
• Nelder–Mead: NMSMAX by Higham [22].
• Direct search: DSPFD (randomized) by Gratton et al. [17], BFO by Porcelli
& Toint [34], and MCS (multi coordinate search) by Huyer & Neumaier [23].
• Model-based: BCDFO by Gratton et al. [19], UOBYQA and NEWUOA by
Powell [35,36], and SnobFit by Huyer & Neumaier [24].
• Covariance matrix adaptation evolution: CMAES (stochastic) by Auger & Ha-
nsen [2].

Other variant matrix adaptation evolution solvers are LMMAES (limited memory)
by Loshchilov et al. [29], fMAES (fast) by Beyer [6], and BiPopMAES (Bi-
Population) by Beyer & Sendhoff [7]. GRID by Elster & Neumaier [15]
is another model-based solver for bound constrained noisy black box optimization
problems.

We discuss the advantages and disadvantages of the above solvers. The model-based
solvers are only effective for problems in low dimensions in the presence of noise,
but they cannot handle problems in medium to high dimensions because n(n+ 3)/2
sample points are needed to construct fully quadratic models. By using extrapola-
tions, the line search solvers (VRBBO and SDBOX) are more efficient and robust
than the direct search solvers. In fact, extrapolations are the accelerated component
of these line search methods. They expand step sizes along with fixed directions un-
til the function values are improved. Both direct search and line search solvers can
handle problems in small to large dimensions. Although another line search solver,
FMINUNC, is effective in the noiseless case, it is numerically inefficient in the
presence of noise because the finite difference technique for estimating the gradient
leads to misleading information and poor quasi-Newton directions. The Nelder–Mead
solvers are effective for small scale problems; however, they can also handle prob-
lems in medium dimensions, although their efficiency and robustness decrease with
increasing dimension, e.g., Torczon [38] and Wright [41]. Loshchilov et al. [29]
discussed and showed that solvers based on full covariance matrix adaptation evo-
lution strategies are costly for large problems because the covariance matrices are
stored. Therefore, they proposed a limited memory covariance matrix adaptation
evolution method (LMMAES) for large scale problems. However, this method is
not effective for large scale problems because it ignores some parts of the covariance
matrix, see Section 7.5.3.
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1.2 Known limit accuracy and complexity bounds

In this section, we discuss the achievable limit accuracy and complexity bounds of
several well-known black box optimization methods under standard assumptions:
(A1) The function f is continuously differentiable on Rn, and its gradient is Lipschitz
continuous with Lipschitz constant L.
(A2) The level set L(x0) := {x ∈ Rn | f(x) ≤ f(x0)} of f at x0 is compact.
(A3) The uncertainty of the function value f̃(x) obtained by a noisy oracle is globally
bounded by a small threshold ω > 0, i.e., the condition (2) holds. In the noiseless
case ω = 0 (A3) implies f̃ = f .

(A2) implies that
f̂ := inf{f(x) | x ∈ Rn} = f(x̂) > −∞ (3)

for any global minimizer x̂ of (1).

Given a positive scaling vector s ∈ Rn (fixed in throughout the paper), we define the
scaled 2-norm ‖p‖ of p ∈ Rn and the dual norm ‖g‖∗ of g ∈ Rn by

‖p‖ :=
√∑

i

p2
i /s

2
i and ‖g‖∗ :=

√∑
i

s2
i g

2
i .

For the noiseless case, see Larson et al. [28, Table 8.1] for a summary of known
results on worst-case complexity and corresponding references. To obtain ‖g(x)‖∗ ≤ ε
(under the assumptions (A1) and (A2)), one needs
• O(ε−2) function evaluations for general case,
• O(ε−1) function evaluations for convex case,
• O(log ε−1) function evaluations for strongly convex case. In all cases, the factors
are ignored. Randomized algorithms typically have complexity bounds that are a
factor n better than those of deterministic algorithms, see [3].

In the presence of noise, the limit accuracy of some algorithms was investigated:
• For the unconstrained case, Berahas et al. [4] proved convergence results for
the problem (1) when f is strongly convex. Assuming strong convexity of f and
boundedness of the noise in the approximation gradient, they proved that a quasi-
Newton method with a fixed step size has linear convergence to a neighborhood of
the solution; the gradient is estimated by the forward or central finite differences.
Under the additional assumption (A3), they showed that a quasi-Newton method
with step sizes found by a relaxed Armijo line search, called FDLM, has asymptotic
accuracy

f − f̂ = O(Lω). (4)
i.i.d. stands for the independent and identically distributed. Chen [9] proposed a ran-
domized algorithm with Gaussian directions and estimated step sizes, called STRRS
for various types of noise, one of which is discussed here. Under the assumptions
(i) f̃(x)−f(x) = ω(x; ζ) is a stochastic noise component, where ζ is a random vector
with probability distribution Pr(ζ),
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(ii) for all x ∈ Rn, ω is i.i.d with bounded variance var(ω) > 0,
(iii) for all x ∈ Rn, the noise is unbiased, i.e., Eζ(ω) = 0,
(iv) f is convex and (A1) holds,
(v) var(ω) ≤ O(ε/n),
STRRS needs at most O(nLε−1) to ensure that

xN := argmin
x
{f(x) | x ∈ {x0, · · · , xN}}

satisfies E[f(xN )]− f̂ ≤ ε.
• For the bound constrained case, Elster & Neumaier [15] introduced a grid
algorithm, called GRID. Here we restrict their results to the unconstrained case. Un-
der the assumptions (A1)–(A3), [15, Theorem 2] ensures that there exists a constant
Cn such that

‖g(xk)‖∗ ≤ Cn(2ω/hk + Lhk) for xk ∈ Rn

at the end of the kth refinement step, where hk denotes the kth grid size. If hk :=
Θ(
√
ω), then the best order of magnitude can be obtained at least for a point with

the gradient
‖g‖∗ = O(Cn

√
ω). (5)

The dependence of Cn on n is not specified. Under the same assumptions, Lucidi
& Sciandrone [30] constructed a derivative-free line search algorithm, called SD-
BOX, using only the coordinate directions. They proved that, for any k,

‖g(xk)‖∗ = O
(
n3/2Lakmax + nω

akmin

)
, for xk ∈ Rn.

Here akmin and akmax are minimum and maximum values, respectively, for the n step
sizes used along the coordinate directions in the iteration k. If akmax := Θ(

√
ω), the

best order of magnitude can be obtained at least for a point with the gradient

‖g‖∗ = O
(
n3/2√ω

)
. (6)

The order in this bound is the same as in (5).

As stated in the introduction, g̃(x) stands for the estimated gradient at x. Berahas
et al. [5] used the line search discussed in [4]

f̃(x+ αp) ≤ f̃(x) + c1αp
T g̃(x) + 2ω with 0 < c1 < 1 (7)

but step sizes are updated in a different way. Here f̃(x)− f(x) = ω(x; ζ) is stochas-
tic where ζ may be either the dependent, independent or identical. Under the as-
sumptions (A1)–(A3) (neither stochastic noise nor reduction or control of noise is
assumed) and

norm condition: ‖g̃(x)− g(x)‖ ≤ θ‖g(x)‖, for some 0 < θ < 1, (8)

they found that the expected complexity results for a given accuracy ε > 0, which
exceed a near optimal neighborhood to the noise for all cases, are sufficiently larger
than ω. In the general case, O(ε−2) function evaluations with E(‖g‖∗) ≤ ε are used.
In the convex and strongly convex cases, O(ε−1) and O(log ε−1) function evaluations
with E(‖g‖∗) ≤ ε and E(f − f̂) ≤ ε, respectively, are used.

5



1.3 An overview of our method

We propose a new solver for noisy unconstrained black box optimization – called
Vienna noisy randomized black box optimization (VRBBON). Its basic
version is called VRBBON-basic. Following the classifications of Larson et al.
[28] and Rios & Sahinidis [37], our new solver VRBBON is a local model-based
randomized solver.

Similarity of VRBBON with other solvers:
(i) (Algorithmic) VRBBON is an adaptation of our recent solver VRBBO (Kimi-
aei & Neumaier [27]) to the noisy case, while retaining the main structure of
VRBBO, namely a multi-line search algorithm.
(ii) (Practical enhancement) VRBBON uses only one of the practical enhance-
ments of VRBBO, namely random subspace directions.
(iii) (Complexity results) In all cases, the order of our bounds is the same as in
Berahas et al. [5].

Difference between VRBBON and other solvers:
(i) (Algorithmic) VRBBON repeatedly calls a decrease search called DS that
uses an improved multi-line search algorithm called MLS that is likely to reduce
function values. MLS uses heuristics to find and update step sizes that are signifi-
cantly different from the way step sizes are updated in other solvers, e.g., SDBOX,
VRBBO, and FMINUNC. After a few calls to MLS by DS, without decreasing
the function value, the step sizes may become too small if the noise is high. All
derivative free line search methods have this drawback when the noise is high. To
remedy this, DS reconstructs the step sizes heuristically.
(ii) (New practical enhancements) Unlike VRBBO, SDBOX, and FMIN-
UNC, VRBBON uses many new practical enhancements. This solver constructs
surrogate quadratic models in adaptively determined subspaces that can handle
medium and large scale problems. Although these models have lower accuracy in
higher dimensions, their usefulness has been confirmed in extensive numerical exper-
iments in the presence of strong noise. MLS is performed along the new directions, ei-
ther random approximate coordinate, perturbed random or improved trust
region directions:
• It is well known that the complexity of randomized black box optimization meth-
ods is better than that of deterministic methods by a factor of n in the worst case
(cf. [3]); therefore, using random directions seems preferable to using deterministic
ones.
• Even better directions are random approximate coordinate directions.
• Improved trust region directions are found by minimizing surrogate quadratic mod-
els in adaptively determined subspaces within a trust region.
• Perturbed random directions are perturbations of random directions by scaled ap-
proximate descent directions in adaptively determined subspaces.
(iii) (Complexity results for VRBBON-basic) For VRBBON-basic that uses
only scaled random directions and no practical enhancements, we prove the com-
plexity results with probability arbitrarily close to one for nonconvex, convex,
and strongly convex functions in the presence of noise. In contrast to the method
of Berahas et al. [5], which uses the norm condition (8), our line search does not
use the term c1αp

T g̃(x) of the condition (7), but γα2 with 0 < γ < 1 because the
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estimation of the gradient may be inaccurate in the presence of high noise, leading
to failure of the line search algorithm, e.g., see behaviour of FMINUNC in
Section 8. However, we estimate the gradient to generate different heuristic direc-
tions in Section 5. Therefore, we obtain our complexity bound regardless of the norm
condition (8) since the nature of the line search algorithms is different. On the other
hand, our bounds are obtained with high probability. Therefore, they are more suit-
able than those of Berahas et al. [5], which are valid only in expectation.
(iv) (Complexity results for VRBBON) To obtain the complexity results for
VRBBON (implemented version), random scaled directions should be used; this is
not a problem when other directions are used. In fact, the order of the complexity
bounds of VRBBON does not change for all cases after applying the heuristic im-
provements, only their factors become larger. However, the robustness and efficiency
of VRBBON are numerically increased.

In Section 2 we discuss how to generate random directions. Then, in Section 3, we
describe a basic version of VRBBON using random directions. Complexity results
of a basic version of VRBBON for all cases with a given probability arbitrarily close
to one in the presence of noise are proved in Section 4. An implemented version of
the VRBBON solver with many new heuristic techniques is discussed in Section 5.
VRBBON (implemented version) is discussed in Section 6 and its complexity results
are discussed in Section 7. Section 8 provides a comparison between VRBBON and
the solvers discussed in Section 1.1 on the 549 unconstrained CUTEst test problems
from the collection of Gould et al. [16] and makes a recommendation as to
which solvers are robust and efficient based on dimension and noise level.
It turns out that VRBBON is more robust and efficient, especially for medium and
high dimensions. The VRBBON package is publicly available at

https://www.mat.univie.ac.at/~kimiaei/software/VRBBON.

2 Search direction

In this section it is described how to generate random directions. Then it is shown
that these directions satisfy the two-sided angle condition with probability at least
half.

The standard random direction is the random direction p uniformly i.i.d. in [− 1
2 ,

1
2 ]n.

As explained in the introduction, i.i.d. stands for the independent and identically
distributed. The scaled random direction is a standard random direction p scaled
by γrd/‖p‖, where 0 < γrd < 1 is a tiny tuning parameter, resulting in ‖p‖ = γrd.

Essential for our complexity bounds is the following result (Proposition 2 in [27]) for
the unknown gradient g(x) of f(x) at x ∈ Rn.
Proposition 1 Scaled random directions p satisfy the inequality

Pr(‖g(x)‖∗‖p‖ ≤ 2
√
cn|g(x)T p|) ≥ 1

2

with a positive constant c ≤ 12.5. The approximate value for the constant c has been
discussed in [27, Section 9.1].
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3 VRBBON-basic, a basic version of VRBBON

This section discusses the following algorithm, a basic randomized method for NBBOP,
called VRBBON-basic.

Algorithm 1 VRBBON-basic, a basic randomized method for NBBOP
Given the tuning parameters Q > 1, 0 < γ < 1, γe > 1, δmax > 0, 0 ≤ δmin ≤ 1, R ≥ 2
(integer), T0 ≥ 1 (integer).

1: Compute f̃0 := f̃(x0) and set nfunc := 1, δ0 := δmax, zbest := x0, and f̃(zbest) := f̃(x0).
2: for k = 1, 2, 3, · · · do
3: initialize the number of successful iterations of DS-basic by nDS

succ := 0;
4: for t = 1, · · · , T0 do . starting DS-basic
5: initialize the step size α1 := δk; . starting MLS-basic
6: initialize the number of successful iterations of MLS-basic by nMLS

succ := 0;
7: for r = 1, · · · , R do
8: compute the scaled random direction pr and set good := 0;
9: while true do . starting extrapolation along one of ±pr; if possible

10: compute zr := zbest + αrpr and f̃(zr);
11: set nfunc := nfunc + 1; . counting the number nfmax of function evaluations
12: if nfunc reaches nfmax then, VRBBON-basic ends;
13: end if
14: if f̃(zbest)− f̃(zr) > γα2

r then . γα2
r-sufficient gain along pr is found

15: set good := 1, f̃re := f̃(zr), and expand the step size to αr := γeαr;
16: else if −pr has not been tried already then
17: set pr := −pr; . opposite direction is tried
18: else, break; . no γα2

r-sufficient gain along ±pr
19: end if
20: end while
21: if good then . the rth iteration of MLS-basic is successful
22: set αr+1 :=

αr

γe
and zbest := zbest + αr+1pr; . ending extrapolation

23: update f̃(zbest) := fre and nMLS
succ := nMLS

succ + 1;
24: else . the rth iteration of MLS-basic is unsuccessful
25: reduce the step size to αr+1 :=

αr

γe
;

26: end if
27: end for . ending MLS-basic
28: if nMLS

succ > 0 then . the tth iteration of DS-basic is successful
29: set nDS

succ := nDS
succ + 1, yt := zbest, and f̃(yt) := f̃(zbest);

30: else . the tth iteration of DS-basic is unsuccessful
31: set yt := xk and f̃(yt) := f̃(xk); . MLS-basic is inefficient
32: end if
33: end for
34: if nDS

succ > 0 then set t′ := argmin
t=1:T0

{f̃(yt)}, xk := yt
′ , and f̃(xk) := f̃(yt′ );

35: else, set xk := xk−1 and f̃(xk) := f̃(xk−1); . DS-basic is inefficient
36: end if . ending DS-basic
37: if δk−1 ≤ δmin then set xbest := xk and f̃best := f̃(xk); VRBBON-basic ends.
38: end if
39: if nDS

succ is zero then . the kth iteration of VRBBON-basic is unsuccessful
40: set δk := δk−1/Q; . δk is reduced
41: else . the kth iteration of VRBBON-basic is successful
42: set δk := δk−1; . δk remains fixed
43: end if
44: end for
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VRBBON-basic counts with k ∈ N0 := N ∪ {0} and t ∈ {1, 2, · · · , T0} how many
times the DS-basic and MLS-basic procedures are performed, respectively. Here
1 ≤ T0 <∞ is a tuning parameter. Moreover, the MLS-basic procedure counts the
number of scaled random directions by r ∈ {1, 2, · · · , R}, whose limit is the tuning
parameter 2 ≤ R <∞.

Let zr (r = 1, · · · , R) be the sequence generated by the MLS-basic procedure.
Defining r′ := argmin

r=1:R
{f̃(zr)}, we denote by zbest := zr

′ the best point found

by the MLS-basic procedure and by f̃(zbest) := f̃(zr′ ) its inexact function value.
The extrapolation is the accelerating component of the MLS-basic procedure. It
increases the convergence speed to achieve an ε =

√
ω-approximate stationary point.

The goal is to expand the extrapolation step sizes αr by the tuning parameter
γe > 1 along the fixed direction pr and compute the corresponding trial point zr =
zbest + αrp

r and its inexact function value f̃(zr), as long as the condition

f̃(zbest) < f̃(zr)− γα2
r

is satisfied, where 0 < γ < 1 is a tuning parameter. The MLS-basic procedure
accepts the trial point zr = zbest +αrp

r as the new best point zbest = zr. We denote
f̃(x) − f̃(zr) as the gain. If the gain along pr is at least γα2

r , we say that γα2
r-

sufficient gain has been found along pr, which means that the Boolean variable
good is equivalent to true and false otherwise. The rth iteration of the MLS-basic
procedure is called successful if good is true, and unsuccessful otherwise. Suc-
cessful iterations are the results of extrapolations. The MLS-basic procedure uses
nMLS

succ to count the number of successful iterations and is called inefficient when it
terminates with nMLS

succ = 0. After the rth extrapolation (if possible), since the last
point generated by the extrapolation does not provide γα2

r-sufficient gain along pr,
we set αr+1 = αr/γe to obtain the corresponding step size of the penultimate point
zbest := zbest + αrp

r, while its inexact function value f̃(zbest) := f̃re has already
been computed. During the rth iteration of the MLS-basic procedure, if good is
false, the corresponding step size is reduced to αr+1 = αr/γe; otherwise, if it is true,
extrapolation is attempted and the step size is extended to αr = γeαr. The question
is what is the initial value for αr. We denote by δk the kth step size generated by
VRBBON-basic, and discuss below how to update it. Let δmax > 0 be the initial
step size, which is a tuning parameter, i.e., δ0 := δmax. The initial step size of the
MLS-basic procedure is αr = δk in the kth iteration of VRBBON-basic.

We denote by yt (r = 1, · · · , T0) the sequence generated by the DS-basic procedure
and by xk (k = 1, 2, 3, · · ·) the sequence generated by VRBBON-basic. The tth
iteration of the DS-basic procedure is unsuccessful if the MLS-basic procedure
is inefficient and is successful otherwise. The DS-basic procedure counts by n DS

succ
the number of successful iterations and is called inefficient when it terminates with
n DS

succ = 0. We denote by xbest the overall best point and by f(xbest) the overall
best inexact function value of VRBBON-basic, i.e., the final best point and
its inexact function value found by the DS-basic procedure. Indeed, the overall best
point is an ε-approximate stationary point of the sequence xk (k = 1, 2, 3, · · ·). If
nDS

succ = 0 is zero, we say that the kth iteration of VRBBON-basic is unsuccessful
and otherwise successful.
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VRBBON-basic first chooses the best starting point zbest = z1 = x0 and its
inexact function value f̃(zbest) = f̃(z1) = f̃(x0) before the first call to the MLS-
basic procedure. Next, it chooses zbest = z1 = xk−1 and f̃(zbest) = f̃(z1) = f̃(xk−1)
for k ≥ 2, where xk−1 is the (k − 1)th point generated by VRBBON-basic, and
f(xk−1) is its inexact function value. In each iteration, the DS-basic procedure
hopefully improves the function value by repeatedly (T0 times) calling the MLS-
basic procedure with R scaled random search directions and taking yt = zbest and
f̃(yt) = f̃(zbest) when nMLS

succ is positive. Otherwise, yt = yt−1 and f̃(yt) = f̃(yt−1).
When the DS-basic procedure terminates after T0 executions, VRBBON-basic
selects the kth point xk := yt

′ and its inexact function value f̃(xk) := f̃(yt′ ) of
the sequence xk (k = 1, 2, 3, · · ·), where t′ := argmin

t=1:T0

{f̃(yt)}. Once the step size

δk is below the minimum threshold 0 ≤ δmin < 1, which is a tuning parameter,
VRBBON-basic terminates with the overall best point xbest := xk and its inexact
function value f̃(xbest) := f̃(xk) in the iteration k. Otherwise, if n DS

succ = 0 the step
size δk is reduced by a factor of Q > 1, which is a tuning parameter; otherwise, it
remains fixed δk = δk−1. VRBBON-basic tries to find an ε-approximate stationary
point xbest that satisfies ‖g(xbest)‖∗ ≤ ε for a threshold ε =

√
ω before the condition

δk ≤ δmin is satisfied. When δmin = 0 and the gradient g(xbest) is unknown, nfmax
is required as an upper bound on the number of function evaluations for a finite
termination.

4 Bounds for VRBBON-basic

Under the assumptions (A1)–(A3), this section discusses how VRBBON-basic is
terminated after at most
• O(ω−1) function evaluations in the general case,
• O(

√
nω−1/2) function evaluations in the convex case,

• O(n log(ω−1)) function evaluations in the strongly convex case
with an approximate point xbest (overall best point), with a given probability arbi-
trarily close to 1, satisfying

f(xbest) ≤ sup{f(x) | x ∈ Rn, f(x) ≤ f(x0), and ‖g(x)‖∗ = O(
√
nω)}.

As explained in the introduction, it is not clear to us which point, since the gradients
and Lipschitz constants are unknown. In contrast to the method of Berahas et al.
[5], which uses the norm condition, our line search does not use the term c1αp

T g̃(x)
of the condition (7), since the estimate of the gradient may be inaccurate in the
presence of high noise, leading to the failure of the line search algorithm, but γα2.
Therefore, we are not interested in obtaining our complexity bound under the norm
condition (8). We will only use the estimated gradient to generate some heuristic
directions in Section 5. In all cases, the order of our bounds is the same as in [5],
although the nature of the line search algorithms is different. On the other hand, our
bounds are obtained with high probability. Therefore, they are more suitable than
those of Berahas et al. [5], which are valid only in expectation.
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The following result generalizes Proposition 1 in [27]. It is shown that if the rth itera-
tion of the MLS-basic procedure is unsuccessful, a useful bound for the directional
derivative can be found. In this case, no γα2

r-sufficient gain (r ∈ {1, 2, · · · , R}) is
found along the search directions ±pr (good is false when these directions are tried).

Proposition 2 Let {zr} (r = 1, 2, · · · , R) be the sequence generated by the MLS-
basic procedure in the (k + 1)th iteration of VRBBON-basic. Moreover, suppose
that (A1)–(A3) hold and 0 < γ < 1. Then, for all zr, pr ∈ Rn, at least one of the
following holds:
(i) f̃(zr + αrp

r) < f̃(zr)− γα2
r,

(ii) f̃(zr + αrp
r) > f̃(zr) + γα2

r and f̃(zr − αrpr) < f̃(zr)− γα2
r,

(iii) |g(zr)T pr| ≤ γαr + 2ω/αr + 1
2Lαr‖p

r‖2.

Proof (A1) results in

αrg(zr)T pr − 1
2Lα

2
r‖pr‖2 ≤ f(zr + αrp

r)− f(zr) ≤ αrg(zr)T pr + 1
2Lα

2
r‖pr‖2. (9)

We assume that (iii) is violated, so that

|g(zr)T pr| > γαr + 2ω/αr + 1
2Lαr‖p

r‖2. (10)

We consider the proof in the two cases:
Case 1. If g(zr)T pr ≤ 0, then from (2) and (10) we get

f̃(zr + αrp
r)− f̃(zr) ≤ f(zr + αrp

r)− f(zr) + 2ω

≤ αrg(zr)T pr + 1
2Lα

2
r‖pr‖2 + 2ω

= −αr|g(zr)T pr|+ 1
2Lα

2
r‖pr‖2 + 2ω < −γα2

r , (11)

meaning that good is true if pr was tried.
Case 2. If g(zr)T pr ≥ 0, then from (2) and (10) we get

f̃(zr − αrpr)− f̃(zr) ≤ f(zr − αrpr)− f(zr) + 2ω

≤ g(zr)T (−αrpr) + 1
2Lα

2
r‖pr‖2 + 2ω

= −αr|g(zr)T pr|+ 1
2Lα

2
r‖pr‖2 + 2ω < −γα2

r , (12)

meaning that good is true if −pr was tried. We now show that good is false if pr is
tried. In fact, (11) results in that (i) holds. Beside, (12) results in that the second
inequality in (ii) holds, and by (2), (9), and (10) the first half

f̃(zr + αrp
r)− f̃(zr) ≥ f(zr + αrp

r)− f(zr)− 2ω

≥ αrg(zr)T pr − 1
2Lα

2
r‖pr‖2 − 2ω > γα2

r

is obtained, meaning that good is false if pr was tried.
ut
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The following result is a generalization of Theorem 1 in [27] for the MLS-basic
procedure to the noisy case in the (k + 1)th iteration of VRBBON-basic. As dis-
cussed earlier, the MLS-basic procedure uses R scaled random directions (pr for
r = 1, 2, · · · , R). If αmin > 0 is a minimum threshold for the step sizes generated by
the MLS-basic procedure, it is proved that one of the following holds:
(i) If at least the Rth iteration of the MLS-basic procedure is successful, meaning
that good is true when −pR is tried, a minimum reduction in the inexact function
value is found.
(ii) An upper bound on the unknown gradient norm of at least one zr of the points
generated by the unsuccessful iterations of the MLS-basic procedure is found with
a given probability arbitrarily close to one. In fact, it is not clear to us which point,
since the gradients and Lipschitz constants are not available.

Theorem 1 Let {zr} (r = 1, 2, · · · , R) be the sequence generated by the MLS-basic
procedure in the (k+1)th iteration of VRBBON-basic. Assume that (A1)–(A3) hold
and nfmax is sufficiently large. Then one of the following happens:
(i) If at least the MLS-basic procedure has a successful iteration, then it decreases
the inexact function value by at least γα2

R.
(ii) Assume that

γe > 1, 0 < η ≤ 1
2 , R := dlog2 η

−1e ≥ 2, and γ1−R
e δk ≥ αmin. (13)

If the MLS-basic procedure has no successful iteration, then at least one zr′ (1 ≤
r′ ≤ R) of the points evaluated by the unsuccessful iterations of the MLS-basic
procedure, with the probability at least 1−η, has an unknown gradient g(zr′ ) satisfying

‖g(zr
′
)‖∗ ≤

√
cnΓ (δk), (14)

where c comes from Proposition 1 and Γ (δk) := (2γ + L)δk + 4γR−1
e ω/δk. Here δk

is fixed in the MLS-basic procedure, independent of r, and is updated outside this
procedure.

Proof Let R := {1, . . . , R}. We denote by pr the rth scaled random search direction,
by zr the rth point, and by αr = γ1−r

e δk ≥ αmin (by (13)) the rth step size.

(i) The worst case requires 2R + 1 function evaluations and assumes that the Rth
iteration of the MLS-basic procedure is successful and the other iterations are
unsuccessful. In the unsuccessful iterations, two function values are computed along
the directions ±pr (r ∈ R \ {R}), but in the Rth iteration which is successful,
good is false when pR is attempted and true when −pR is attempted. Therefore,
an extrapolation step along −pR is performed with at most two additional function
evaluations and the γα2

R-sufficient gain. Consequently, (i) is verified.

(ii) Suppose that f̃(zr) does not decrease by more than γα2
r for all r ∈ R; all

iterations are unsuccessful. Then we define Γ0(αr) := (2γ + L)αr + 4ω/αr. Since
Γ0(αr) for αr > 0 is a convex function, we obtain for r ∈ R

Γ0(αr) ≤ max{Γ0(α1), Γ0(αR)} < (2γ + L)α1 + 4ω/αR
= Γ (δk) := (2γ + L)δk + 4γR−1

e ω/δk, (15)
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where α1 := max
r∈R
{αr} = δk > αR := min

r∈R
{αr} = γ1−R

e δk since γe > 1 and R ≥ 2.

Then we obtain from Proposition 2, for all r ∈ R,

|g(zr)T pr| ≤ γα2
r + 2ω + L

2 ‖p
r‖2 < γα2

r + L

2 α
2
r + 2ω,

so that for all r ∈ R and from (15), the inequality

‖g(zr)‖∗ = ‖g(zr)‖∗‖pr‖/αr ≤ 2
√
cn|g(zr)T pr|/αr

≤
√
cn
(

(2γ + L)αr + 4ω
αr

)
=
√
cnΓ0(αr) <

√
cnΓ (δk)

holds with probability 1
2 or more according to Proposition 1. In other words,

Pr
(
‖g(zr)‖∗ >

√
cnΓ (δk)

)
<

1
2 , for any fixed r ∈ R.

Therefore, we find at least one of the gradients g = g(zr′ ) (r′ ∈ R) such that (14)
holds, that is,

Pr
(
‖g‖∗ ≤

√
cnΓ (δk)

)
= 1−

R−1∏
r=1

Pr
(
‖g(zr)‖∗ >

√
cnΓ (δk)

)
≥ 1− 2−R ≥ 1− η.

ut

The following result discusses the complexity bound for the DS-basic procedure in
the (k+1)th iteration of VRBBON-basic. It is proved that either an upper bound
on the number of function evaluations is found or an upper bound on the unknown
gradient norm of at least one of the points generated by the unsuccessful iterations
of the DS-basic procedure is found with a given probability arbitrarily close to one
in the presence of noise; in fact, it is not clear to us which point, since the gradients
and Lipschitz constants are not available.

Theorem 2 Suppose that (A1)–(A3) hold, nfmax is sufficiently large, the integer
T0 ≥ 1, R ≥ 2, 0 < γ < 1, γe > 1, and let f(x0) be the initial value of f . Moreover,
let {yt} (t = 1, 2, · · · , T0) be the sequence generated by the DS-basic procedure in
the (k + 1)th iteration of VRBBON-basic. Then:
(i) The number of successful iterations of the DS-basic procedure is bounded by

γ−1δ−2
k

(
f(x0)− f̂ + 2ω

)
, (16)

where γ := γ
2(2−R)
e γ > 0, f̂ is finite by (A1) and (A2) discussed in Section 1.2,

and the step size δk is fixed, independent of t, and updated outside the DS-basic
procedure. Moreover, the number of function evaluations of the DS-basic procedure
is bounded by

2RT0 + (2R+ 1)T0γ
−1δ−2

k

(
f(x0)− f̂ + 2ω

)
. (17)

13



(ii) If (13), then the unsuccessful iterations of the DS-basic procedure have at least
one point yt′ (1 ≤ t′ ≤ T0), with probability at least 1− η, satisfying

‖g(yt
′
)‖∗ ≤

√
cnΓ (δk) (18)

where c and Γ (δk) come from Proposition 1 and Theorem 1.

Proof (i) S denotes the index set of successful iterations of the DS-basic procedure
whose each successful iteration is a result of at least one successful iteration of the
MLS-basic procedure. As discussed in the proof of Theorem 1(i), at least the Rth
iteration of the MLS-basic procedure is successful that a result of an extrapolation
along −pR. We do not know how many times we can extrapolate the step sizes αR
to γe along the fixed direction −pR, but at least once αR is expanded by γe in an
extrapolation and therefore at most R−1 times α1 = δk is reduced by γe if we cannot
extrapolate along the other scaled random directions and their opposite directions.
Therefore, for each t ∈ S, according to the role of updating αr in lines 5, 15, and 25
of Algorithm 1,

αR ≥ γeδk/γR−1
e = γ2−R

e δk

in the (k+ 1)th iteration of VRBBON-basic. Put γ := γ
2(2−R)
e γ > 0. We now find

an upper bound on the number of successful iterations and their function evaluations
of the DS-basic procedure. For all t ∈ S in the (k + 1)th iteration of VRBBON-
basic, we have

f̃(yt+1)− f̃(yt) = f̃(zR)− f̃(zbest) ≤ −γα2
R ≤ −γδ2

k,

recursively resulting in f̃(yt+1) ≤ f̃(x0) − γδ2
k

∑
t∈S

1 = f̃(x0) − γδ2
k|S|. From (2) we

conclude that

|S| ≤ γ−1δ−2
k

(
f̃(x0)− f̃(yt+1)

)
≤ γ−1δ−2

k

(
f(x0)− f̂ + 2ω

)
.

Therefore, (16) is valid. The step size δk is fixed, independent of t, and updated
outside the DS-basic procedure. As mentioned earlier, the MLS-baisc procedure
requires at most 2R+1 function evaluations in the worst case (using R scaled random
directions and R corresponding opposite directions, all iterations of MLS-basic
procedure are unsuccessful; however, if the Rth iteration is successful, then good is
false when pR is attempted and true when −pR is attempted; a sufficient gain along
the last opposite direction −pR is found. Therefore, an extrapolation with at most
two function evaluations is attempted). Therefore, the successful iterations of the
DS-basic procedure use at most

(2R+ 1)γ−1δ−2
k

(
f(x0)− f̂ + 2ω

)
function evaluations.

U denotes the index set of unsuccessful iterations of the DS-basic procedure. Since
T0 = |U |+ |S| and the MLS-baisc procedure uses 2R function evaluations for each
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unsuccessful iteration, we conclude that the unsuccessful iterations of the DS-basic
procedure use at most 2R|U | ≤ 2RT0 function evaluations. Consequently, the number
of function evaluations of the DS-basic procedure is bounded by (17).
(ii) In this case, the unsuccessful iterations of the DS-basic procedure generate the
sequence yt (t = 1, · · · , T0), resulting in, that for at least one yt′ (1 ≤ t′ ≤ T0) of the
evaluated points, with probability ≥ 1− 2−R ≥ 1− η, ‖g(yt′ )‖∗ ≤

√
cnΓ (δk) holds.

ut

The objective function f is convex ( σ = 0) if the condition

f(y) ≥ f(x) + g(x)T (y − x) + 1
2σ‖y − x‖ for x, y ∈ L(x0) (19)

holds and is strongly convex (σ > 0) if (19) holds.

It is proved that an upper bound for the unknown gradient norm of at least one of
points generated by the unsuccessful iterations of VRBBON-basic is found for all
cases with a given probability arbitrarily close to one in the presence of noise.

Theorem 3 Let {xk} (k = 1, 2, · · ·) be the sequence generated by VRBBON-basic.
Assume that (13) holds, δmax > 0, Q > 1, nfmax is sufficiently large,

δmin := Θ(
√
ω). (20)

Then
δ` = Q1−`δmax for ` ≥ 1 (21)

and VRBBON-basic terminates after at most

K := 1 +
⌊ log(δmax/δmin)

logQ

⌋
= O(logω−1/2) (22)

unsuccessful iterations. Moreover, VRBBON-basic finds at least one point x`′ with
probability at least 1− η satisfying
(i) in the nonconvex case the condition

‖g(x`
′
)‖∗ = O(

√
nω); (23)

(ii) in the convex case the condition (23) and

f(x`
′
)− f̂ = O(r0

√
nω), (24)

where r0 is given by

r0 := sup
{
‖x− x̂‖ | x ∈ Rn, f(x) ≤ f(x0)

}
<∞; (25)

(iii) in the strongly convex case the condition (23),

f(x`
′
)− f̂ = O(nω)

2σ , and ‖x`
′
− x̂‖ = O(

√
nω)

σ2 . (26)
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Proof (i) Since VRBBON-basic has K unsuccessful iterations, from calls to the
DS-basic procedure, the condition

‖g(x`
′
)‖∗ ≤

√
cn min

`=0:K
Γ (δ`), (27)

holds for at least one x`′ of the evaluated points with probability ≥ 1− 2−R ≥ 1− η
by Theorem 2(ii). By (22), we have δK = Q1−Kδmax ≤ δmin. Then (20)–(22) yield

Γ (δK) = (2γ + L)δK + 4γR−1
e ω/δK

= (2γ + L)Q1−Kδmax + 4γR−1
e QK−1ω/δmax = O(

√
nω),

whose application in (27) leads to (23).
(ii) The convexity of f leads to f̂ ≥ f` + g(x`)T (x̂ − x`) for all ` ≥ 0. (i) leads to
the fact that for at least one x`′ of the evaluated points with probability ≥ 1− η the
condition f`′ − f̂ ≤ g(x`′ )T (x`′ − x̂) ≤ ‖g(x`′ )‖∗‖x`

′ − x̂‖ = O(r0
√
nω) holds.

(iii) If x is assumed to be fixed, the right-hand side of (19) is a convex quadratic
function with respect to y whose gradient in the components vanishes at yi = xi −

siσ
−1gi(x) for i = 1, · · · , n, leading to f(y) ≥ f(x) − 1

2σ ‖g(x)‖2
∗. As mentioned

earlier, s ∈ Rn is a scaling vector here. By applying (23) in this inequality, we obtain
at least for one x`′ of the evaluated points with probability ≥ 1− η

f`′ − f̂ ≤ 1
2σ ‖g(x`

′
)‖2
∗ = O(nω)

2σ for `′ ≥ 0.

Substituting x for x̂ and y for x`′ into (19), we get f`′ ≥ f(x̂)+ σ
2 ‖x

`′− x̂‖2 such that
(i) leads to the fact that for at least one x`′ of the evaluated points with probability
≥ 1− η

‖x`
′
− x̂‖2 ≤ 2

σ
(f`′ − f̂) ≤ 1

σ2 ‖g(x`
′
)|2∗ = O(

√
nω)

σ2

holds. ut

Compared to the results discussed in Section 1.2, the order in the bound (23) is the
same as that in (5) and (6). The conditions (24) and (26) are the same as those of
Berahas et al. [5], except that they are satisfied with high probability.

The following result discusses the complexity bound for VRBBON-basic for all
cases. It is proved that an upper bound on the number of function evaluations used
by VRBBON-basic is found with a given probability arbitrarily close to one in the
presence of noise.

Theorem 4 Let {xk} (k = 1, 2, · · ·) be the sequence generated by VRBBON-basic.
Under the assumptions of Theorem 3, VRBBON-basic terminates after at most
(i) O(ω−1) function evaluations in the nonconvex case,
(ii) O

(√
nω−1/2) function evaluations in the convex case,

(iii) O(n logω−1) function evaluations in the strongly convex case.
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Proof Denote by NK the number of function evaluations for the termination of
VRBBON-baisc, put N0 := 1, and denote f` = f(x`). In worst case, we ter-
minate VRBBON-basic after at most K unsuccessful iterations from calls to the
DS-basic procedure, with K points satisfying (18), and at least one point satisfy-
ing (23). Since the gradient and Lipschitz constants are unknown, these points are
unknown. As a consequence of this termination, we have δ` = Q1−`δmax ≤ δmin for
` ≥ K and

δ` ≥ δmin for ` ∈ B := {1, · · · ,K}. (28)

The condition (28) is used in the proof of (ii) and (iii).
(i) We conclude from (17) and (21)–(22) that

NK ≤ 1 +
K∑
`=1

(
2RT0 + (2R+ 1)T0γ

−1δ−2
` (f(x0)− f̂ + 2ω)

)

= 1 + 2RT0K + (2R+ 1)T0γ
−1
(
f(x0)− f̂ + 2ω

) K∑
`=1

δ−2
`

= 1 + 2RT0K + (2R+ 1)T0γ
−1δ−2

max

(
f(x0)− f̂ + 2ω

) K∑
`=1

Q2`−2

= 1 + 2RT0K + (2R+ 1)T0γ
−1δ−2

max

(
f(x0)− f̂ + 2ω

)Q2K − 1
Q2 − 1 .

Here γ comes from Theorem 2. In this case, RQ2K dominates the other terms (RK,
RωQ2K , Q2K , ωQ2K), resulting in

NK = O(Rω−1) = O(ω−1).

(ii) From (A1) and (A2), r0 is finite. The convexity of f results in f̂ ≥ f`+g(x`)T (x̂−
x`) for all ` ≥ 0. By Theorem 3, with probability ≥ 1− η, we get

f` − f`+1 ≤ f` − f̂ ≤ g(x`)T (x` − x̂) ≤ ‖g(x`)‖∗‖x` − x̂‖ (29)

≤ r0
√
cn
(

(2γ + L)δ` + 4γR−1
e ω/δ`

)
for ` ∈ B. (30)

We consider the following two cases:
Case 1. The first term (2γ+L)δ` in (30) dominates the second term. Then we have

f` − f`+1 = O(
√
nδ`) for ` ∈ B . (31)

Then we define B1 := {` ∈ B | (31) holds}.
Case 2. The second term 4γR−1

e ω/δ` in (30) dominates the first term. Then we
conclude from (28) that

f` − f`+1 = O(
√
n(ω/δ`)) = O(

√
n(ω/δmin)) = O(

√
nω) for ` ∈ B. (32)
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Then we define B2 = {` ∈ B | (32) holds}.
Then we conclude from (21), (20), and (22) that with probability ≥ 1− η∑

`∈B

f̃` − f̃`+1

δ2
`

=
∑
`∈B1

f̃` − f̃`+1

δ2
`

+
∑
`∈B2

f̃` − f̃`+1

γδ2
`

≤
∑
`∈B1

f` − f`+1 + 2ω
δ2
`

+
∑
`∈B2

f` − f`+1 + 2ω
δ2
`

≤
∑
`∈B1

O(
√
nδ`) + 2ω
δ2
`

+
∑
`∈B2

O(
√
nω) + 2ω
δ2
`

≤
∑
`∈B

O(
√
nδ`) + 2ω
δ2
`

+
∑
`∈B

O(
√
nω) + 2ω
δ2
`

= O(
√
n)
∑
`∈B

δ−1
` +O(

√
nω)

∑
`∈B

δ−2
` + 4ω

∑
`∈B

δ−2
`

= O(
√
n)
∑
`∈B

Q`−1 +O(
√
nω)

∑
`∈B

Q2`−2 + 4ω
∑
`∈B

Q2`−2

= O(
√
nQK) +O(

√
nωQ2K) + ωO(Q2K)

= O(
√
nω−1/2) +O(

√
nωω−1) + ωO(ω−1)

= O(
√
nω−1/2) +O(

√
nω−1/2) +O(n) = O(

√
nω−1/2)

so that by (i) and (13)

NK ≤ 1 + (2R+ 1)T0
∑
`∈B

f̃` − f̃`+1

γδ2
`

= O
(√

nRω−1/2) = O
(√

nω−1/2)
holds with probability ≥ 1− η.
(iii) When x is assumed to be fixed, the right hand side of (19) is a convex quadratic
function in terms of y whose gradient in the components vanishes at yi = xi −
siσ
−1gi(x) for i = 1, · · · , n, resulting in f(y) ≥ f(x)− 1

2σ ‖g(x)‖2
∗. Here as mentioned

earlier s ∈ Rn is a scaling vector. By applying (23) in this inequality, we get with
probability ≥ 1− η

f`− f`+1 ≤ f`− f̂ ≤
1

2σ ‖g(x`)‖2
∗ ≤

cn

2σ

(
(2γ+L)δ` + 4γR−1

e ω/δ`

)2
for ` ∈ B. (33)

We consider the following two cases:
Case 1. The first term (2γ+L)δ` in (33) dominates the second term. Then we have

f` − f`+1 = O(nδ2
` ) for ` ∈ B (34)

and denote B1 := {` ∈ B | (34) holds}.
Case 2. The second term 4γR−1

e ω/δ` in (33) dominates the first term. Then we
conclude from (28) that

f` − f`+1 = O
(
n(ω/δ`)2

)
= O

(
n(ω/δmin)2

)
= O(nω) for ` ∈ B (35)
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and denote B2 = {` ∈ B | (35) holds}.
Then we conclude from (20)–(22) that with probability ≥ 1− η

∑
`∈B

f̃` − f̃`+1

δ2
`

=
∑
`∈B1

f̃` − f̃`+1

δ2
`

+
∑
`∈B2

f̃` − f̃`+1

δ2
`

≤
∑
`∈B1

f` − f`+1 + 2ω
δ2
`

+
∑
`∈B2

f` − f`+1 + 2ω
δ2
`

≤
∑
`∈B1

O(nδ2
` ) + 2ω
δ2
`

+
∑
`∈B2

O(nω) + 2ω
δ2
`

≤
∑
`∈B

O(nδ2
` ) + 2ω
δ2
`

+
∑
`∈B

O(nω) + 2ω
δ2
`

= O(n)K +O(nω)
∑
`∈B

δ−2
` + 4ω

∑
`∈B

δ−2
`

= O(n)K +O(nω)
∑
`∈B

Q2`−2 + 4ω
∑
`∈B

Q2`−2

= O(n)K +O(nω)O(Q2K) + ωO(Q2K)

= O(n logω−1) +O(nωω−1) + ωO(ω−1)

= O(n logω−1) +O(n) +O(1) = O(n logω−1)

so that by (i) and (13)

NK ≤ 1 + (2R+ 1)T0
∑
`∈B

f̃` − f̃`+1

γδ2
`

= O(nR log(ω−1)) = O(n log(ω−1))

holds with probability ≥ 1− η. ut

Compared to the results discussed in Section 1.2, the order of our complexity bounds
is the same as that of Berahas et al. [5] which is valid in expectation.

5 Heuristic enhancements

In this section we propose many practical improvements that make VRBBON a
very competitive solver. Two of the most important of these are surrogate quadratic
models in adaptively determined subspaces and finding and updating step sizes
in an improved version of the MLS-basic procedure, called MLS. Improved ver-
sions of the DS-basic procedure, called DS, use the MLS procedure with different
search directions. The DS procedure heuristically reconstructs the step sizes in each
unsuccessful iteration, resulting in small extrapolation step sizes. VRBBON calls
the DS procedure repeatedly until an ε =

√
ω-approximate stationary point is not

found.
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5.1 Random approximate coordinate directions

As mentioned in the introduction, the use of random directions is preferable to
the use of deterministic directions (see [3]). On the other hand, it is known that
coordinate directions are useful to estimate the gradient, since at least one of these
directions has a good angle with the gradient (see [11]). Inspired by these points, we
construct an effective version of scaled random directions, which we call random
approximate coordinate direction, that combines the advantages of both scaled
random and coordinate directions. The random coordinate direction p multiplies a
standard random direction by a scaling vector. Only its one component is 1/‖p‖ and
its other components are randomly generated and are γrd/‖p‖ with 0 < γrd < 1,
where is a small tuning parameter.

5.2 Subspace information

The points Zi with the best inexact function values are stored as columns of a matrix
Z, their inexact function values f̃(Zi) in the vector F , and their step sizes αi in the
vector S. We adjust the matrix Z if its entries are contaminated by NaN or ±∞ by
inserting a large positive tuning parameter γZ > 0.

We denote the points stored in Z as sample points, whose maximum number
is defined by mmax := min

{
m, 1

2n(n + 3)
}

, where m is a tuning parameter. The

number of sample points is denoted by m ∈ [2,mmax] and the subspace size
mo is defined as the largest integer satisfying 1

2m
o(mo + 3) ≤ m.

If m is greater than mmax, we update Z, F , S by replacing the worst point, its
inexact function value, and its step size with the current best point, its inexact
function value, and its step size, respectively. Otherwise, we append the current best
point to Z, its inexact function value to F , and its step size to S.

5.3 Random subspace directions

In [27] it was shown by extensive numerical results that after using a derivative-
free line search algorithm with coordinate directions, the use of random subspace
directions by such an algorithm is very useful. Inspired by this, after using random
coordinate directions by VRBBON, random subspace directions are used by such
an algorithm in the hope of reducing the influence of noise.

We write AII := (Aij)i∈I,j∈I for the submatrix of A with row and column indices
of I by AII , A:k for the kth column of a matrix A, and b for the index of the best
point.

Random subspace directions are constructed based on the information of sample
points with good function values. As in [27], we generate a (m − 1) × 1 standard
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random vector αrs and then scale it with αrs := αrs/‖αrs‖. Then we compute the

random subspace direction by p :=
m∑

i=1,i6=b

αrs
i (Z:i − Z:b).

5.4 Reduced quadratic models

It is well-known [24] that model-based algorithms need at least

N := n+ 1
2n(n+ 1) = 1

2n(n+ 3)

sample points and O(N3) operations for estimating the gradient vector and Hessian
matrix of an objective quadratic model. For medium or large scale problems, this is
prohibitively expensive. To overcome this problem, we construct quadratic models in
adaptively determined subspaces called reduced quadratic models, one of which
is a fully quadratic model when m = N .

For all i = 1, · · · ,m, let zi and f̃i := f̃(zi) be the sample points and their inexact
function values stored in Z and F , respectively, and define si := zi − Z:b. Before
defining the model errors, we need to know whether the number of sample points
m is allowable to construct a full or reduced quadratic model or not. Therefore, we
compute all the subspace sizes that are admissible to construct quadratic models.
The subspace size defined in Subsection 5.2 is calculated as follows

mo :=
⌊1

2(−3 +
√

9 + 8m)
⌋
. (36)

It is clear that for m < N no fully quadratic model can be constructed; reduced
quadratic models are constructed instead. When the dimension is larger than mmax,
the n × mmax matrix Z and the n × 1 vector zm are reduced to the mmax × mo

matrix Zo and the mo × 1 vector zo, respectively. In other words, the restriction of
the entries of Z and zm is done by choosing a random subset of size mo.

Some components of each best point stored in Z may be ignored. To overcome
this shortcoming, reduced quadratic models are constructed several times before m
exceeds mmax, each time choosing Zo (zo) from a random subset of the entries of Z
(zbest).

We write g̃o and B̃o for the estimated gradient vector and the symmetric Hessian

matrix in a subspace, respectively. Let M := 1
2m

o(mo+3) and K := min(2M,m−1).

To evaluate the inexact g̃o and B̃o, we define the model errors by

εi :=
f̃i − Fb − (g̃o)T si −

1
2s

T
i B̃

osi

sci
for all i = 1, · · · ,K, (37)
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where sc is an appropriate scaling vector. It is shown in Deuflhard & Heindl [12]
that numerical methods can generally perform much better when they preserve affine
invariance. The following choice ensures the affine invariance of the fitting method.

The numerator of (37) is O(‖si‖3) if m = N ; otherwise it is O(‖si‖2). To obtain εi
of a uniform magnitude, we choose sc as follows:
(1) We form the matrix S := ( s1, · · · , sK )T , where si := zo

i −Zo
:b for all i = 1, · · · ,K.

(2) We compute the matrix

Ho :=
(∑

l

sls
T
l

)−1
(38)

by constructing a reduced QR factorization S = QR, where Q ∈ RK×m
o is an

orthogonal matrix and R ∈ Rm
o×mo is a square upper triangular matrix.

(3) We compute the scaling vector sc

sci := (sTi Hosi)e/2 for i = 1, · · · ,K, (39)

with sTi H
osi = ‖R−T si‖2 for i = 1, · · · ,K. In (39), e = 3 if m = N holds (full

quadratic model) and e = 2 otherwise (reduced quadratic model).

We calculate Ho and sc in the same way as SNOBFIT [24] by performing a re-
duced QR factorization, except that they are performed in adaptively determined
subspaces.

We have ε = Ay − a, where, for i = 1, · · · ,K,

ai := Fb − f̃i
sci

and Aij :=



sji
sci

if j ∈ {1, · · · ,mo},

(sj−m
o

i )2

2sci
if j ∈ {mo + 1, · · · , 2mo},

sj
′

i s
j′′

i

sci
if j ∈ {2mo + 1, · · · ,M}.

(40)

Here j′ and j′′ are the remainders of the division of j− 2mo and j− 2mo + 1 by mo,
respectively, and sji is the jth component of the vector si. To find the entries of the
inexact g̃o and B̃o we solve the linear least squares problem

min
y∈RM

‖Ay − a‖2
2. (41)

In finite precision arithmetic, each of the vectors a, sc, y, and hence g̃o, B̃o can have
entries with value NaN or ±∞. We replace the components of the vectors a, sc and
y with value NaN or ±∞ by a large positive tuning parameter γv > 0.

We construct the vector a and the matrix A by (40), adjust a, and find all multipliers
by solving (41). Then we adjust y and define g̃o by the first mo components of y, the
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diagonal entries of B̃o by the next mo components of y, and the off-diagonal entries
of B̃o symmetrically by the remaining entries of y.

In summary, we construct reduced quadratic models. Two advantages of such models
are the use of limited sample points and the ability to construct them multiple times
by increasing the size of the subspace from 2 to mmax. To obtain a robust model,
we adjust the matrix Z and the vector y whenever they are contaminated by NaN
or ±∞. Second, we compute sc and adjust it. Third, we calculate y and adjust it.
Finally, we estimate g̃o and B̃o.

5.5 Perturbed random directions

The use of other good directions is required when the MLS procedure with scaled
random directions and random subspace directions are inefficient in some iterations
when noise is present. In this case, perturbed random directions are used if B̃o

is not computable, which implies that at least one entry of B̃o is contaminated by
NaN or ±∞. Otherwise, reduced quadratic models are constructed in Subsection 5.4
and improved trust region directions are computed, as explained later in Subsection
5.6.

A perturbed random direction p̃ := po−αog̃o is a perturbation of a standard random
direction po by the steepest descent direction −g̃o with the approximate gradient.
Both g̃o and po are restricted to a subspace which is a random subset J of {1, · · · , n}
whose size is mo. For all i 6∈ J , p̃i = 0. To be numerically appropriate, both are
scaled by the heuristic step size αo := (1 + κ(g̃o)T po)/‖g̃o‖2 and the decreasing
sequence κ := 1/(1+nfunc)γκ with the tuning parameter 0 < γκ < 1 and the number
of function evaluations nfunc. It is easy to show that p̃T g̃ = (κpo − αog̃o)T g̃o < 0;
hence the perturbed random directions are descent directions.

5.6 An improved trust region direction

The goal of trust region methods is to restrict steps within a trust region to increase
the accuracy of surrogate models. Therefore, trust region directions can be very
useful, even in the presence of noise.

We now solve the trust region subproblem in a subspace

min ζT g̃o + 1
2ζ

T B̃oζ

s.t. ‖ζ − zo‖∞ ≤ d,

whose solution is denoted by ζbest. Here d is denoted as the trust region radius.
The trust region direction is po

tr := ζbest−zo in a subspace which is a random subset
of {1, · · · , n} whose size is mo. The idea is to construct the improved trust region
direction by scaling po

tr with the positive tuning parameter γp and perturbing it by
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pmean := zmean − Z:b, where zmean is the mean of Z. This perturbation transforms
po

tr into a full subspace direction enriched by pmean.

5.7 MLS – an improved version of MLS-basic

In this section, we discuss an improved version of the MLS-basic procedure, the
MLS procedure. Namely, the MLS procedure is enriched by heuristic techniques
for finding and updating step sizes.

The efficiency of line search methods depends on how their step sizes are updated.
The line search algorithms discussed in [27] and [30] find their step sizes in a way that
does not seem to be effective, especially for large scale problems, because the step
sizes are updated independently; they depend only on the corresponding step size
generated by the previous executions. To address this shortcoming, we construct an
improved version of the MLS-basic procedure whose step sizes are generated and
updated in a new way.

Let 0 ≤ αinit < αinit ≤ ∞ be the lower and upper bounds of an initial interval as
the tuning parameters. We start with the initial interval [α, α] = [αinit, αinit]. Then
α or α is updated. We describe this below.

• The initial interval. When the trial point zr = zbest ± αrp
r and its inexact

function value f̃(zr) are computed in line 10 of VRBBON-basic, the gain f̃(zbest)−
f̃(zr) is stored in the vector dF and its step size αr in the vector a. Namely, when
an extrapolation with many sufficient gains along pr (r ∈ {1, · · · , R}) is found, much
information is stored in the vectors dF and a. Then, an index set of the stored
points with the decreasing inexact function values is found by ind := {i | dFi <
0 for i = 1, · · · , n}. If ind is non-empty, the lower bound of the interval [α, α] can
be found by α := max(aind); if α = αinit is given as a positive tuning parameter,
then α is updated by α := min(α,max(aind)). Next, an index set of positive gains
or the corresponding step sizes strictly larger than α is found by

ind := {i | dFi ≥ 0 or ai > α for i = 1, · · · , n}.

If ind is nonempty, an upper bound on the initial interval is found by α := min(aind);
if α = αinit is given as a positive tuning parameter, the upper bound of the initial
interval is updated by α := max(α,min(aind)).

• The initial extrapolation step size. If extrapolation step sizes are too small, ex-
trapolations may be performed slowly with many function evaluations. To overcome
this problem, we only change line 5 in VRBBON-basic to α1 := max{

√
αα, δk−1}

whenever the interval [α, α] ⊆ (0,∞) is found.

• Reducing extrapolation step sizes. Since the source of the inefficiency of the
line search algorithm is generating step sizes that are too small when the interval
has already been found, we change line 22 in VRBBON-basic to

αr+1 := max
{
αmin,min

{√
αα,

αr
γe

}}
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with the goal of slowly reducing the step sizes. Here αmin ∈ (0, 1) is a minimum
threshold for the step size which is a tuning parameter.

• Updating the interval. After finding the new step size αr, we update either the
lower or the upper bound of the interval. This can be done in the following two cases:
(i) After extrapolation has been performed with γα2

r-sufficient gain along one of ±pr
(good is true).
(ii) After no γα2

r-sufficient gain along ±pr has been found (good is false).
To do this, we insert the following statement between lines 26 and 27 of VRBBON-
basic:

1: if αr+1 > α then, set α = αr+1; . upper bound is updated
2: else, set α = αr+1; . lower bound is updated
3: end if

• Decrease of f in flat regions. If the rth iteration of the MLS procedure is
unsuccessful (no γα2

r-sufficient gain along ±pr is found), the best point, its inex-
act function value, and its step size are updated when f̃(zbest + αrp

r) < f̃(zbest).
In particular, this can happen in very flat regions of the feasible domain that do
not contain a nearby stationary point. Therefore, we insert the following statement
between lines 25 and 26 in VRBBON-basic:

1: if f̃(zr) < f̃(zbest) then, set zbest := zr and f̃(zbest) := f̃re ; nMLS
succ := nMLS

succ + 1;
2: end if

• Updating the best point. If the rth iteration of the MLS procedure is success-
ful (γα2

r-sufficient gains are found along one of ±pr). A point with lowest inexact
function value is chosen as the new best point. As discussed in Subsection 5.2, the
matrices X, F , and S are then updated. In fact, lines 22 and 23 of VRBBON-basic
should be changes as:

1: find i′ := min
i≥0

{
f̃(zbest + αrγ

i
ep
r)
∣∣∣ f̃(zbest + αrγ

i
ep
r) < f̃(zbest)

}
;

2: compute αr+1 = γi
′

e αr, zbest := zbest+αr+1p
r, and f̃(zbest) := f̃(zbest+αr+1p

r);
3: update nMLS

succ := nMLS
succ + 1;

5.8 DS – an improved version of DS-basic

This section discusses the DS procedure, an improved version of the DS-basic pro-
cedure that extended to include different search directions and heuristic techniques
for updating step sizes and reconstructing the lower and upper bounds of the in-
terval. It also describes how many worst case function evaluations are used in each
successful and unsuccessful iteration of the DS procedure.

Denote by dt the trust region radius in the iteration t and let C be the number
of random approximate coordinate directions. Let γd1 > 1 and γd2 ∈ (0, 1) be the
parameters for updating dt and let 0 < dmin < dmax < ∞ be the parameters for
controlling dt. As described in Subsection 3, the DS-basic procedure has R calls
to the MLS-basic procedure with scaled random directions. An improved version
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of the DS-basic procedure, the DS procedure, retains this procedure and addition-
ally has C calls to the MLS-basic procedure with random approximate coordinate
directions with the goal of restoring and updating the m sample points and their
inexact function values. Then, the DS procedure constructs a quadratic model or a
linear model to produce an improved trust region direction or a perturbed random
direction, and makes T0 calls to the MLS procedure along these directions as long
as the MLS procedure is efficient (good is true). If the DS procedure is inefficient
for all T0 calls to the MLS procedure (n DS

succ = 0), the lower bound α of the cur-
rent interval [α, α] becomes too small, so the length of this interval becomes large.
Therefore, we need to restart the interval and heuristically reconstruct the lower and
upper bounds of this interval using the information from the m sample points. Let
γa > 0 be the parameter for adjusting heuristic step size. The structure of DS is
shown below.

Algorithm 2 DS – an improved version of DS-basic
1: for t = 1, · · · , T0 do
2: perform MLS with either R scaled random directions, C random
3: approximate coordinate directions, or both;
4: if m ≥ 3 then
5: while true do . until good is true
6: perform MLS with random subspace directions;
7: if good is false, break; end . MLS is inefficient
8: end while
9: end if

10: if m ≥ 2 then . either a reduced quadratic or a linear model is constructed
11: if both estimations are computable then
12: construct a reduced quadratic model;
13: generate the trust region radius by dt := ‖zmean − Z:b‖;
14: restrict the trust region radius by dt := max(dmin,min(dmax, γd1dt));
15: minimize the model to get an improved trust region direction;
16: while true do . until good is true
17: perform MLS with improved trust region directions;
18: if good is false, break; end . MLS is inefficient
19: update dt := (γd2 + rand)dt; . rand ∈ (0, 1] is a random value
20: end while
21: else
22: while true do . until good is true
23: perform MLS with perturbed random directions;
24: if good is false, break; end . MLS is inefficient
25: end while
26: end if
27: end if
28: if nDS

succ is zero then . MLS is inefficient in all T0 calls
29: for i = 1, · · · , n do
30: compute dzi := Z:i − Z:b; . the difference of the old good points
31: find Ii := {j | dzj 6= 0 and (Z:b)j 6= 0};
32: compute βti := min{|(Z:b)j/dzj | | j ∈ Ii};
33: end for
34: generate two random values µ1 and µ2 satisfying 0 < µ1 < µ2 < 1;
35: reconstruct [α, α] := [γaµ1βtmin, γaµ2βtmin] with βtmin := min

i=1,···,n
βti ;

36: end if
37: end for
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We discuss how many function evaluations are required for each successful and un-
successful iteration of the DS procedure in the worst case:
• Lines 2-3 of this procedure require at most 2R function evaluations if only scaled
random directions are used, while this procedure is inefficient. This is because the
MLS procedure is inefficient with R scaled random directions and R their opposite
directions.
• Lines 2-3 of this procedure use at most 2C function evaluations if only random
approximate coordinate directions are used, while this procedure is inefficient. Since
the MLS procedure is inefficient with C random approximate coordinate directions
and C their opposite directions.
• Lines 2-3 of this procedure use at most 2R+2C function evaluations if both scaled
random directions and random approximate coordinate directions are used, while
this procedure is inefficient. Since the MLS procedure is inefficient with R + C di-
rections and R+ C their opposite directions.
• Lines 5-8 of this procedure use at most 2 function evaluations, while this procedure
is inefficient. This is because the MLS procedure is inefficient with the first random
subspace direction and its opposite direction.
• Either lines 16-20 or 22-26 of this procedure use at most 3 function evaluations.
Since an extrapolation step is attempted with at most two function evaluations, the
MLS procedure is efficient along the opposite direction of the last improved trust
region direction (or the last random perturbed direction). Then, the best point is
updated.
The result of this discussion is that the DS procedure requires at most 2R+ 2C + 4
function evaluations for each unsuccessful iteration and at most 2R+2C+5 function
evaluations for each successful iteration. In the next section, we use this discussion
to determine how the complexity results for an implemented version of VRBBON-
basic will change compared to the complexity results of VRBBON-basic.

6 VRBBON – an improved version of VRBBON-basic

As mentioned earlier, VRBBON is an implemented version of VRBBON-basic.
It uses the DS and MLS procedures instead of their basic versions, and uses all
practical enhancements to achieve an ε =

√
ω-approximate stationary point.

If the step sizes are too small, VRBBON-basic may end up in strongly non-convex
regions before a minimizer is found. To overcome this drawback, we change line 42
in VRBBON-basic to δk := max(δk−1,

√
αα) if the interval [α, α] ⊆ (0,∞) has

already been found.

7 VRBBON

This section discusses some implementation details, tuning parameters, and under
which conditions the complexity results for VRBBON can be guaranteed.

To obtain the improved trust region directions discussed in Subsection 5.6, we solve
the trust region subproblem by minq8 [25], available at
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https://www.mat.univie.ac.at/~neum/software/minq/.

minq8 requires the tuning parameters minqmax = 10000 and minqeps = 10−8.

The values of tuning parameters of VRBBON are chosen in Table 1, except the
other five tuning parameters comBound (are the complexity results valid?), model
(model-based?), R ≥ 2 (number of scaled random directions in MLS), C ≥ 2 (num-
ber of random approximate coordinate directions), and T0 ≥ 1 (number of times
MLS is called by DS). model is a Boolean variable taking 0 (model-free) and 1
(model-based).

Table 1: The values of some tuning parameters of VRBBON, except comBound, model, T0,
and R

m = 230 mmax = min(0.5n(n+ 3),m) δmin = 0 δmax = 1 γZ = 100 γr = 10−30

γd1 = 2 Q = 1.5 dmin = 10−4 γv = 100 γ = 10−6 γe = 3
dmax = 103 αinit = 0.01 αinit = 0.99 γκ = 0.85 γd2 = 0.5 γp = 0.25
γa := 10−5 αmin = 10−3 ∗ rand

In the following three cases we discuss the conditions under which complexity results
can be found for VRBBON:
Case 1. comBound = 0. In this case, random scaled directions are used and ran-
dom approximate coordinate directions are ignored. Other proposed directions and
heuristic techniques are also used. The order of complexity bounds does not change
for all cases after applying the heuristic improvements, only their factors become
larger.
Case 2. comBound = 1. Both random scaled directions and random approximate co-
ordinate directions are used. Other proposed directions and heuristic techniques are
also used. In this case, the order of complexity bounds does not change for all cases,
such as case 1, after heuristic improvements are used, but only their factors become
larger compared to VRBBON and Case 1. In fact, random approximate coordinate
directions are numerically better than random scaled directions, but Proposition 1
may not hold for random approximate coordinate directions.
Case 3. comBound = 2. In this case, random approximate coordinate directions
are used and random scaled directions are ignored. Other proposed directions and
heuristic techniques are also used. In this case, Proposition 1 may not be valid and
no complexity result is found for VRBBON.

In Case 1 and Case 2, Theorem 1, Theorem 2, and Theorem 4 remain valid with
the following modifications:
• In Theorem 1(i),R (number of scaled random steps) must be replaced by T (number
of all trial steps), and Theorem 1(ii) remains valid with probability ≥ 1 − η for a
given 0 < η ≤ 1

2 .
• In Theorem 2(i), the number of function evaluations of DS is bounded by

(2R+ 4)T0 + (2R+ 5)T0γ
−1δ−2

k

(
f(x0)− f̂ + 2ω

)
in Case 1 and

(2R+ 2C + 4)T0 + (2R+ 2C + 5)T0γ
−1δ−2

k

(
f(x0)− f̂ + 2ω

)
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in Case 2. As mentioned earlier, the step size δk is fixed, independent of t, and
updated outside the DS procedure. We have described at the end of Section 5.8 how
to obtain the factors of the above two bounds. Theorem 3(ii) remains valid.
• In the proof of Theorem 4, 2RT0 and (2R+ 1)T0 must be replaced by (2R+ 4)T0
and (2R+5)T0 respectively in Case 1, and by (2R+2C+4)T0 and (2R+2C+5)T0
respectively in Case 2.

8 Numerical results

In this section, we describe how the test problems are selected and give details of the
solvers compared. Performance measures are then defined to determine which solvers
are robust and efficient for small to large scale problems. Next, a testing and tuning
are performed to increase the efficiency and robustness of our solver while preserving
the complexity results. Then, we compare our solver with state-of-the-art solvers for
low to high dimensional problems. Afterwards, a real-life problem for the dimension
n = 300 and n = 5000 is used to observe how VRBBON approaches a minimizer
of this problem compared to other solvers. Finally, we make a recommendation as
to which solvers are robust and efficient based on dimension and noise level.

8.1 Test problems

For our numerical results, we used the 549 unconstrained CUTEst test problems from
the collection of Gould et al. [16]. To prepare these results, the test environment of
Kimiaei & Neumaier [26] was used.

The starting point. As in [27], we choose the starting point x0 := 0 and shift the
arguments by

ξi := (−1)i−1 2
2 + i

, for all i = 1, . . . , n,

to avoid a solver guessing the solution of toy problems with a simple solution (e.g.,
all zeros or all ones) – there are quite a few of these in the CUTEst library. That
is, the initial point is chosen by x0 := ξ and the initial inexact function value is
f̃0 := f̃(x0) while the other inexact function values are computed by f̃` := f̃(x` + ξ)
for all ` ≥ 0. In fact, this choice increases the difficulty of the problems, see Section
8.5.1.

Type of noise. In the numerical results reported here, uniform random noise is used,
which is consistent with the assumption (A3). The function values are calculated by
f̃ = f + (2 ∗ rand−1)ω, where f is the true function value and ω ≥ 0 is a noise level
whose size identifies the difficulty of the noisy problems. Here rand stands for the
uniformly distributed random number.
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8.2 Codes compared

We compare VRBBON with:
• VRBBO – an efficient random algorithm by Kimiaei & Neumaier [27]. It can
be downloaded from

https://www.mat.univie.ac.at/~neum/software/VRBBO/.

• SNOBFIT, obtained from

http://www.mat.univie.ac.at/~neum/software/snobfit/snobfit_v2.
1.tar.gz,

is a combination of a branching strategy to enhance the chance of finding a global
minimum with a sequential quadratic programming method based on fitted quadratic
models to have good local properties by Huyer & Neumaier [24].

• GRID – a grid algorithm for bound constrained optimization by Elster & Neu-
maier [15], available at

http://www.mat.univie.ac.at/~neum/software/GRID.

This solver was originally written in Fortran with auxiliary routines that are no
longer available. We reimplemented GRID in Matlab. The trust region subproblem
is solved with minq8 [25].

• UOBYQA and NEWUOA, obtained from

https://www.pdfo.net/docs.html,

are model-based solvers by Powell [35,36].
• BFO – a trainable stochastic derivative free solver for mixed integer bound-
constrained optimization by Porcelli & Toint [34], available at

https://github.com/m01marpor/BFO.
• DSPFD – a direct search MATLAB code for derivative-free optimization by
Gratton et al. [17], available at

pages.discovery.wisc.edu/%7Ecroyer/codes/dspfd_sources.zip.
• MCS – a deterministic global optimization by a multilevel coordinate search by
Huyer & Neumaier [23], downloaded from

https://www.mat.univie.ac.at/~neum/software/mcs/.
It used the following parameters:

iinit = 1; nfMCS = nfmax; smax = 5n+ 10; stop = 3n; local = 50;
gamma = eps; hess = ones(n, n); prt = 0.

• BCDFO – a deterministic model-based trust region algorithm for derivative-
free bound constrained minimization by Gratton et al. [19], obtained from Anke
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Troeltzsch (personal communication).

• FMINUNC – a deterministic quasi Newton or trust region algorithm, available
at the Matlab Optimization Toolbox at

https://ch.mathworks.com/help/optim/ug/fminunc.html.
The following options set was used:

opts = optimoptions(@fminunc),‘Algorithm’,‘quasi-newton’
‘Display’, ‘Iter’,‘MaxIter’,Inf,‘MaxFunEvals’, limits.nfmax
‘TolX’, 0,‘TolFun’,0,‘ObjectiveLimit’,-1e-50);

• SDBOX – a derivative-free algorithm for bound constrained optimization prob-
lems discussed in [30], downloaded from

http://www.iasi.cnr.it/~liuzzi/DFL/index.php/list3.

• CMAES, obtained from

http://cma.gforge.inria.fr/count-cmaes-m.php?Down=cmaes.m,

is the stochastic covariance matrix adaptation evolution strategy by Auger &
Hansen [2]. We used CMAES with the tuning parameters

oCMAES.MaxFunEvals = nfmax, oCMAES.DispFinal = 0, oCMAES.DispModulo = 0,
oCMAES.LogModulo = 0, oCMAES.SaveVariables = 0, oCMAES.MaxIter = nfmax,
oCMAES.Restarts = 7.

• LMMAES by Loshchilov et al. [29], fMAES by Beyer [6], BiPopMAES by
Beyer & Sendhoff [7], obtained from

https://homepages.fhv.at/hgb/downloads.html,

are three various covariance matrix adaptation evolution strategies.

• subUOBYQA, subNEWUOA and subNMSMAX are UOBYQA, NEWU-
OA and NMSMAX, respectively, in the random subspace generated by the columns
of S := 2 ∗ rand(n,m) − 1 (in Matlab) to handle problems in medium and high
dimensions. Here n is the dimension of the problem and m is the subspace dimension.
Using these solvers, we recursively minimize the problem f̃(x + ∆Sz) with respect
to z ∈ Rn. Let ∆ be the trust region radius, which is initially one, and let 0 < γ < 1
be a parameter for the decrease of the function value. If f̃(x) > f̃(x+∆Sz)− γ∆2

holds, the trial point x + ∆Sz can be accepted as a new point and ∆ is expanded
to ∆ = max(∆, ‖Sz‖); otherwise ∆ is reduced to ∆ = 1

2 min(∆, ‖Sz‖). For each call
to these solvers, the maximum number of function evaluations is max(dn/me, 10m).
According to our findings, the best value for the subspace dimesion m is 10. For
m < 10 the efficiency and robustness of these subspace solvers decrease when they
are used to solve problems in medium and high dimensions, while for 10 < m ≤ 30
the number of sample points to construct the quadratic models increases, making
each call to the original solver (UOBYQA, NEWUOA and NMSMAX) costly.

31



Unfortunately, software for FDLM by Berahas et al. [4] and STRRS by Chen
[9] was not available to us.

8.3 Performance measures

Two important tools for figuring out which solver is robust and efficient are the
data profile of Moré & Wild [32] and the performance profile of Dolan & Moré
[14], respectively. S denotes the list of compared solvers and P denotes the list of
problems. The fraction of problems that the solver s can solve with κ groups of np+1
function evaluations is the data profile of the solver s, i.e.,

δs(κ) := 1
|P|

∣∣∣{p ∈ P ∣∣∣ crp,s := cp,s
np + 1 ≤ κ

}∣∣∣. (42)

Here np is the dimension of the problem p, cp,s is the cost measure of the solver
s to solve the problem p and crp,s is the cost ratio of the solver s to solve the
problem p. The fraction of problems that the performance ratio prp,s is at most τ is
the performance profile of the solver s, i.e.,

ρs(τ) := 1
|P|

∣∣∣{p ∈ P ∣∣∣ prp,s := cp,s
min(cp,s | s ∈ S) ≤ τ

}∣∣∣. (43)

Note that ρs(1) is the fraction of problems that the solver s wins compared to the
other solvers, while ρs(τ) (δs(κ)) is the fraction of problems for sufficiently large τ
(κ) that the solver s can solve. The data and performance profiles are based
on the problem scales, but not on the noise levels. The other two plots
are based on the noise levels. These four plots are used to identify the
behaviour of the compared solvers with respect to problem scales and
noise levels.

Efficiency. The efficiency ep,s of the solver s to solve the problem p is the inverse of
the performance ratio prp,s. Efficiency measures the ability of a solver s ∈ S relative
to an ideal solver. The number of function evaluations is taken as a suitable cost
measure, and the efficiency relative to this measure is called the nf efficiency. The
robustness of a solver counts the number of problems it solves.

Other plots based on the noise level. To see the behavior of the compared
solvers in the presence of low to high noise, we plot the number of problems solved
and the efficiency versus the noise level.

Measure for the convergence speed. The quotients

qs := (fs − fopt)/(f0 − fopt) for s ∈ S (44)

are measures to identify the convergence speed of the solver s to reach a minimum
of the smooth true function f . These quotients are not available in real applications.
Here
• fs is the best function value found by the solver so,
• f0 is the function value at the starting point (common for all solvers),
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• fopt is the function value at the best known point (in most cases a global minimizer
or at least a better local minimizer) found by running a sequence of gradient-based
and local/global gradient free solvers; see Appendix B in [27].

Maximum budgets and stopping tests.

We consider a problem solved by the solver s if qs ≤ ε and neither the maximum
number nfmax of function evaluations nor the maximum allowed time secmax in
seconds is satisfied, and unsolved otherwise. ε, secmax and nfmax are chosen so
that the best solver can solve at least half of the problems. They depend on the
dimension and the noise level because increasing the noise level and dimension ex-
tremely increases the difficulty of the problems. Therefore, ε is chosen slightly larger
for problems in medium and high dimensions than for problems in low dimensions.
The following choices were found valuable:

secmax =
{ 180 if 1 ≤ n ≤ 300,

420 if 301 ≤ n ≤ 5000,

nfmax =
{

2n2 + 1000n+ 5000 if 1 ≤ n ≤ 300,
500n if 301 ≤ n ≤ 5000,

and

ε :=


10−3 if ω ∈ {10−4, 10−3} and n ∈ [1, 30],
10−2 if ω ∈ {0.1, 0.9} and n ∈ [1, 30],
10−3 if ω = 10−4 and n ∈ [31, 300],
0.05 if ω ∈ {0.1, 0.01, 0.001} and n ∈ [31, 300],
0.05 if ω ∈ {10−5, 10−4, 10−3} and n ∈ [301, 5000].

8.4 Tuning of VRBBON

Five important tuning parameters are comBound (are the complexity results valid?),
model (model-based?), R (number of scaled random directions in MLS), C (number
of random approximate coordinate directions), and T0 (number of times MLS is
called by DS ). Other tuning parameters were chosen fixed as they did not change
the efficiency and robustness of our solver. Accordingly, for a testing and tuning for
small scale problems (1 < n ≤ 30), we consider the 30 versions of VRBBON given
in Table 1. Then we chose the four best versions of VRBBON and ran them for
medium scale problems (31 < n ≤ 300) and large scale problems (300 < n ≤ 5000)
to select the best version of VRBBON to compare with the other solvers. Finding
the optimal tuning parameters for VRBBON and the other goal is still a work in
progress [26].
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C T0 R comBound model complexity chosen as solver
n n – 2 0 no no
n n – 2 1 no no
n 10 – 2 0 no no
n 10 – 2 1 no no
n 5 – 2 0 no no
n 5 – 2 1 no no
n 2 – 2 0 no no
n 2 – 2 1 no VRBBON1
10 n – 2 0 no no
10 n – 2 1 no no
5 n – 2 0 no VRBBON2
5 n – 2 1 no no
2 n – 2 0 no no
2 n – 2 1 no no
– n n 0 1 yes no
dn/2e n dn/2e 1 1 yes VRBBON3
– n n 2 0 yes no
– n n 2 1 yes no
– 10 n 2 0 yes no
– 10 n 2 1 yes no
– 5 n 2 0 yes no
– 5 n 2 1 yes VRBBON
– 2 n 2 0 yes no
– 2 n 2 1 yes no
– n 10 2 0 yes no
– n 10 2 1 yes no
– n 5 2 0 yes no
– n 5 2 1 yes no
– n 2 2 0 yes no
– n 2 2 1 yes no

Fig. 1: 30 variants of tuning of VRBBON

For the noise levels ω ∈ {10−4, 10−3, 10−1, 0.9} and small scale problems (1 < n ≤
30), Figure 2 shows in its subfigures the cumulative (over all noise levels used) per-
formance and data profiles in terms of the number of function evaluations and the
other two plots (the nf efficiency versus the noise level ω and the number of solved
problems versus the noise level ω). The result of this comparison is that VRB-
BON3 is slightly more robust than the others, since all the proposed directions
are used. For this version, the complexity results are valid since random scaled di-
rections were tried. VRBBON1 and VRBBON2 are slightly more efficient than
VRBBON3 and VRBBON, except for high noise. In fact, using scaled random
directions guarantees the existence of complexity results and increases the robustness
of our solver under low to high noise and the efficiency of our solver only under high
noise. Moreover, since VRBBON1, VRBBON3, and VRBBON are model-based,
it is confirmed that VRBBON is effective when it is model-based.

For the noise levels ω ∈ {10−4, 10−3, 10−2, 10−1} and medium scale problems (30 <
n ≤ 300), Figure 3 shows in its subfigures the cumulative (over all noise levels used)
performance and data profiles in terms of the number of function evaluations and the
other two plots (the nf efficiency versus the noise level ω and the number of solved
problems versus the noise level ω). We conclude from these subfigures that VRB-
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Fig. 2: For the noise levels ω ∈ {10−4, 10−3, 10−1, 0.9} and small dimensions 1 < n ≤ 30. Data
profile δ(κ) in dependence of a bound κ on the cost ratio, see (42) while performance profile
ρ(τ) in dependence of a bound τ on the performance ratio, see (43). Problems solved by no
solver are ignored.

BON1 and VRBBON are slightly more efficient and robust than VRBBON2 and
VRBBON3.
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Fig. 3: For the noise levels ω ∈ {10−4, 10−3, 10−2, 10−1} and medium dimensions 30 < n ≤
300. Other details as in Figure 2.

For the noise levels ω ∈ {10−5, 10−4, 10−3} and large scale problems (300 < n ≤
5000), Figure 4 shows in its subfigures, the cumulative (over all noise levels used)
performance and data profiles in terms of the number of function evaluations and
the other two plots (the nf efficiency versus the noise level ω and the number of
solved problems versus the noise level ω). We conclude from these subfigures that
VRBBON1 and VRBBON are more efficient and robust than VRBBON2 and
VRBBON3.

As a result, we choose VRBBON as default version to compare with the other
solvers for problems in low to high dimensions. Note that our complexity results
hold for this version.
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Fig. 4: For the noise levels ω ∈ {10−5, 10−4, 10−3} and large dimensions 300 < n ≤ 5000.
Other details as in Figure 2.
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8.5 Comparison with the other solvers

This section compares the default version of VRBBON with the other solvers for
problems in low to high dimensions. In each figure, we display only the best five
solvers, but the best four solvers in high dimensions.

8.5.1 Small scale: 1 < n ≤ 30

For the noise levels ω ∈ {10−4, 10−3, 10−1, 0.9} and small scale problems (1 <
n ≤ 30), this section contains a comparison between VRBBON and well-known
model-based solvers (UOBYQA, NEWUOA, BCDFO, GRID, and SNOB-
FIT), direct search solvers (NMSMAX, BFO, MCS, DSPFD), line search solvers
(VRBBO, SDBOX, FMINUNC), and matrix adaptation evolution solvers (CM-
AES, fMAES, BiPopMAES, LMMAES). Moreover, a comparison is given be-
tween standard and shifted initial points.

To compare our algorithm with the well-known model-based and direct search solvers,
Figure 5 shows the cumulative (over all noise levels used) performance and data pro-
files in its subfigures in terms of the number of function evaluations and the other two
plots (the nf efficiency versus the noise level ω and the number of solved problems
versus the noise level ω). From the subfigures of Figure 5, NEWUOA is more effi-
cient than the well-known model-based solvers and VRBBON, while UOBYQA is
more robust than others. On the other hand, VRBBON, the second robust solver,
is more efficient than SNOBFIT and GRID and less efficient than others. More-
over, VRBBON and NMSMAX are more robust and efficient than the well-known
direct search solvers. In fact, VRBBON is more robust than NMSMAX, while
NMSMAX is more efficient than VRBBON.
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Fig. 5: Comparison between VRBBON and model-based solvers (first row) and direct search
solvers (second row) for the noise levels ω ∈ {10−4, 10−3, 10−1, 0.9} and small dimensions
1 < n ≤ 30. Other details as in Figure 2.
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Fig. 6: Comparison between VRBBON and line search solvers (first row) and matrix adap-
tation evolution solvers solvers (second row). Details as in Figure 2.

To compare our algorithm with the well-known line search and matrix adaptation
evolution solvers, Figure 6 shows in its subfigures, the cumulative (over all noise levels
used) performance and data profiles in terms of the number of function evaluations
and the other two plots in terms of the noise levels (the nf efficiency versus the
noise level ω and the number of solved problems versus the noise level ω). From the
subfigures of Figure 6, we conclude that VRBBON is more robust and efficient than
the known line search solvers, while VRBBON is more robust and efficient than the
known matrix adaptation evolution solvers at low noise and fMAES is more robust
and efficient than others at high noise. At low to high noise, VRBBON is slightly
more efficient than the known matrix adaptation evolution solvers, while fMAES is
more robust than others.

Since our solver is model-based and line search-based, we now provides two com-
parisons between VRBBON and the best model-based (UOBYQA, NEWUOA,
and BCDFO) and line search solvers (SDBOX and VRBBO) with the shifted
and initial starting points for small scale problems.

If the default starting points are used, we conclude from Figure 7 that VRBBON is
comparable to NEWUOA in terms of efficiency and is more efficient than others. It
is also more robust than others. In fact, the efficiency and robustness of VRBBON
are higher when the standard initial points are used than when the shifted initial
points are used, see Figure 8. Therefore, we used the shifted points for all test
problems.

8.5.2 Medium scale: 30 < n ≤ 300

For the noise levels ω ∈ {10−4, 10−3, 10−2, 10−1} and medium scale problems (30 <
n ≤ 300), this section contains a comparison between VRBBON and the well-
known direct search solvers, line search solvers, and matrix adaptation evolution
solvers.
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Fig. 7: For the noise levels ω ∈ {10−4, 10−3, 10−1, 0.9} and small dimensions 1 < n ≤ 30. The
standard initial points are used. Details as in Figure 2.
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Fig. 8: For the noise levels ω ∈ {10−4, 10−3, 10−1, 0.9} and small dimensions 1 < n ≤ 30. The
shifted initial points are used. Details as in Figure 2.

Figures 9 and 10 show in their subfigures, the cumulative (over all noise levels used)
performance and data profiles in terms of the number of function evaluations and the
other two plots (the nf efficiency versus the noise level ω and the number of solved
problems versus the noise level ω). From the subfigures of Figure 9, we conclude that
VRBBON is more robust and efficient than the known direct search solvers. From
the subfigures of Figure 10, we can also conclude that VRBBON is more robust
and efficient than the known line search solvers and matrix adaptation evolution
solvers at low and medium noise, while LMMAES is more robust than VRBBON
and the other matrix adaptation evolution solvers at high noise.
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Fig. 9: Comparison between VRBBON and direct search solvers for the noise levels ω ∈
{10−4, 10−3, 10−2, 10−1} and medium dimensions 30 < n ≤ 300. Other details as in Figure 2.

Since the model-based solvers cannot handle problems in high dimensions, as de-
scribed earlier, we denote UOBYQA in the random subspace by subUOBYQA
and NEWUOA in the random subspace by subNEWUOA. Moreover, we denote
NMSMAX in the random subspace by subNMSMAX.

The subfigures of Figure 11 show that VRBBON are much more efficient than
others at low to high noise, but VRBBON are more robust than others at low
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Fig. 10: Comparison between VRBBON and line search solvers (first row) and matrix adap-
tation evolution solvers solvers (second row) for the noise levels ω ∈ {10−4, 10−3, 10−2, 10−1}
and medium dimensions 30 < n ≤ 300. Other details as in Figure 2.

noise, while subNEWUOA, subUOBYQA, and NMSMAX are slightly more
robust than VRBBON only at high noise.
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Fig. 11: Comparison between VRBBON and model-based solvers in a random subspace for
the noise levels ω ∈ {10−4, 10−3, 10−2, 10−1} and medium dimensions 30 < n ≤ 300. Other
details as in Figure 2.

8.5.3 Large scale: 300 < n ≤ 5000

For the noise levels ω ∈ {10−5, 10−4, 10−3} and large dimensions 300 < n ≤ 5000,
this section contains a comparison between VRBBON and the four effective solvers
(VRBBO, LMMAES, and SDBOX) for problems in medium dimensions.

Figure 12 shows in its subfigures, the cumulative (over all noise levels used) per-
formance and data profiles in terms of the number of function evaluations for the
noise levels ω ∈ {10−5, 10−4, 10−3} and the other two plots (the nf efficiency versus
the noise level ω and the number of solved problems versus the noise level ω). We
conclude from these subfigures that VRBBON is slightly more efficient than others,
while VRBBO and SDBOX are slightly more robust than VRBBON.
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Fig. 12: Comparison between VRBBON and the effective solvers on the medium scale prob-
lems for the noise levels ω ∈ {10−5, 10−4, 10−3} and large dimensions 300 < n ≤ 5000. Details
as in Figure 2.

8.6 Comparison on a real-life test problem

Consider the driven cavity problem

F (x) = 1
2f(x)T f(x)

from the collection Lukšan & Vlcek [31], where the equation f(x) = 0 is a finite
difference analogue of the nonlinear partial differential equation

∆∆u+ θ
(∂u
∂y

∂∆u

∂x
− ∂u

∂x

∂∆u

∂y

)
= 0, θ = 500,

over the unit square Ω with the boundary conditions u = 0 on ∂Ω and

∂u(0, y)
∂x

= 0, ∂u(1, y)
∂x

= 0, ∂u(x, 0)
∂y

= 0, ∂u(x, 1)
∂y

= 1.

We chosen 13 standard finite difference points on a shifted uniform grid with 50×50
internal nodes. The initial approximate solution is a discretization of u0(x, y) = 0.
We chosen the initial point as x0 = rand(n, 1)− 0.5. We ran VRBBON, VRBBO
and LMMMAES on this problem with the dimension n ∈ {300, 5000}, the bud-
gets nfmax = 200n and secmax = ∞, the accuracy ε ∈ {0.01, 0.001}, and ω ∈
{0.001, 0.0001, 0.00001}. Then the relative function values qs, defined by (44), are
plotted against the number of function evaluations in Figures 13 and 14. It can be
seen that VRBBON approaches a minimizer slightly faster than others. Note that
fbest ≈ 0.01 in (44) is known to us. In fact, it was obtained by running a sequence
of solvers.
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Fig. 13: Convergence (relative function values qs against number of function evaluations) of
VRBBON, VRBBO and LMMMAES on the real-life test problem (Driven cavity) with the
dimension n = 300, the accuracy ε = 0.001, secmax =∞ sec, nfmax = 200n, and fbest = 0.01.
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Fig. 14: Convergence (relative function values qs against number of function evaluations) of
VRBBON, VRBBO and LMMMAES on the real-life test problem (Driven cavity) with the
dimension n = 5000, the accuracy ε = 0.01, secmax =∞ sec, nfmax = 200n, and fbest = 0.01.

8.7 Recommendation

Using Figures 12, 15, and 16, we have recommended which solvers are robust and
which are efficient, depending on the noise level and dimension. Indeed, for small scale
problems, Figure 15 is a comparison between five more robust and efficient solvers,
and for medium scale problems, Figure 16 is a comparison between five more robust
and efficient solvers. As shown in Subsection 8.5.1, Figure 12 is a comparison between
four more robust and more efficient solvers.

Figure 17 is a Flow chart, classified by the problem dimension and the noise level,
with the result that VRBBON is one of the three more robust and efficient solvers
in most cases. Therefore, this solver is highly recommended for NBBOP.
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Fig. 15: Comparison between five more robust and efficient solvers for the noise levels ω ∈
{10−4, 10−3, 10−1, 0.9} and small dimensions 1 < n ≤ 30. Other details as in Figure 2.
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Fig. 16: Comparison between five more robust and efficient solvers for the noise levels ω ∈
{10−4, 10−3, 10−2, 10−1} and medium dimensions 30 < n ≤ 300. Other details as in Figure 2
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Fig. 17: Flow chart classified by the problem dimension and the noise level.
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