Conference paper Open Access

Through-Screen Visible Light Sensing Empowered by Embedded Deep Learning

Liu, Hao; Ye, Hanting; Yang, Jie; Wang, Qing


DCAT Export

<?xml version='1.0' encoding='utf-8'?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:adms="http://www.w3.org/ns/adms#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dct="http://purl.org/dc/terms/" xmlns:dctype="http://purl.org/dc/dcmitype/" xmlns:dcat="http://www.w3.org/ns/dcat#" xmlns:duv="http://www.w3.org/ns/duv#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:frapo="http://purl.org/cerif/frapo/" xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#" xmlns:gsp="http://www.opengis.net/ont/geosparql#" xmlns:locn="http://www.w3.org/ns/locn#" xmlns:org="http://www.w3.org/ns/org#" xmlns:owl="http://www.w3.org/2002/07/owl#" xmlns:prov="http://www.w3.org/ns/prov#" xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" xmlns:schema="http://schema.org/" xmlns:skos="http://www.w3.org/2004/02/skos/core#" xmlns:vcard="http://www.w3.org/2006/vcard/ns#" xmlns:wdrs="http://www.w3.org/2007/05/powder-s#">
  <rdf:Description rdf:about="https://zenodo.org/record/5646942">
    <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://zenodo.org/record/5646942</dct:identifier>
    <foaf:page rdf:resource="https://zenodo.org/record/5646942"/>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Liu, Hao</foaf:name>
        <foaf:givenName>Hao</foaf:givenName>
        <foaf:familyName>Liu</foaf:familyName>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>TU Delft</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Ye, Hanting</foaf:name>
        <foaf:givenName>Hanting</foaf:givenName>
        <foaf:familyName>Ye</foaf:familyName>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>TU Delft</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Yang, Jie</foaf:name>
        <foaf:givenName>Jie</foaf:givenName>
        <foaf:familyName>Yang</foaf:familyName>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>TU Delft</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Wang, Qing</foaf:name>
        <foaf:givenName>Qing</foaf:givenName>
        <foaf:familyName>Wang</foaf:familyName>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>TU Delft</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:title>Through-Screen Visible Light Sensing Empowered by Embedded Deep Learning</dct:title>
    <dct:publisher>
      <foaf:Agent>
        <foaf:name>Zenodo</foaf:name>
      </foaf:Agent>
    </dct:publisher>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#gYear">2021</dct:issued>
    <frapo:isFundedBy rdf:resource="info:eu-repo/grantAgreement/EC/H2020/814215/"/>
    <schema:funder>
      <foaf:Organization>
        <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">10.13039/501100000780</dct:identifier>
        <foaf:name>European Commission</foaf:name>
      </foaf:Organization>
    </schema:funder>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#date">2021-11-05</dct:issued>
    <owl:sameAs rdf:resource="https://zenodo.org/record/5646942"/>
    <adms:identifier>
      <adms:Identifier>
        <skos:notation rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://zenodo.org/record/5646942</skos:notation>
        <adms:schemeAgency>url</adms:schemeAgency>
      </adms:Identifier>
    </adms:identifier>
    <owl:sameAs rdf:resource="https://doi.org/10.1145/3485730.3493454"/>
    <dct:description>&lt;p&gt;Motivated by the trend of realizing full screens on devices such as smartphones, in this work we propose through-screen sensing with visible light for the application of fingertip air-writing. The system can recognize handwritten digits with under-screen photodiodes as the receiver. The key idea is to recognize the weak light reflected by the finger when the finger writes the digits on top of a screen. The proposed air-writing system has immunity to scene changes because it has a fixed screen light source. However, the screen is a double-edged sword as both a signal source and a noise source. We propose a data preprocessing method to reduce the interference of the screen as a noise source. We design an embedded deep learning model, a customized model ConvRNN, to model the spatial and temporal patterns in the dynamic and weak reflected signal for air-writing digits recognition. The evaluation results show that our through-screen fingertip air-writing system with visible light can achieve accuracy up to 91%. Results further show that the size of the customized ConvRNN model can be reduced by 94% with less&lt;br&gt; than a 10% drop in performance.&lt;/p&gt;</dct:description>
    <dct:accessRights rdf:resource="http://publications.europa.eu/resource/authority/access-right/PUBLIC"/>
    <dct:accessRights>
      <dct:RightsStatement rdf:about="info:eu-repo/semantics/openAccess">
        <rdfs:label>Open Access</rdfs:label>
      </dct:RightsStatement>
    </dct:accessRights>
    <dct:license rdf:resource="https://creativecommons.org/licenses/by/4.0/legalcode"/>
    <dcat:distribution>
      <dcat:Distribution>
        <dcat:accessURL rdf:resource="https://doi.org/10.1145/3485730.3493454"/>
        <dcat:byteSize>1297786</dcat:byteSize>
        <dcat:downloadURL rdf:resource="https://zenodo.org/record/5646942/files/AIChallengeIoT2021_Through-Screen VLS.pdf"/>
        <dcat:mediaType>application/pdf</dcat:mediaType>
      </dcat:Distribution>
    </dcat:distribution>
  </rdf:Description>
  <foaf:Project rdf:about="info:eu-repo/grantAgreement/EC/H2020/814215/">
    <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">814215</dct:identifier>
    <dct:title>European Training Network in Low-energy Visible Light IoT Systems</dct:title>
    <frapo:isAwardedBy>
      <foaf:Organization>
        <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">10.13039/501100000780</dct:identifier>
        <foaf:name>European Commission</foaf:name>
      </foaf:Organization>
    </frapo:isAwardedBy>
  </foaf:Project>
</rdf:RDF>
24
12
views
downloads
Views 24
Downloads 12
Data volume 15.6 MB
Unique views 24
Unique downloads 12

Share

Cite as