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Abstract
While ecologists know that models require assumptions, the consequences of their
violation become vague as model complexity increases. Integrated population models
(IPMs) combine several datasets to inform a population model and to estimate sur-
vival and reproduction parameters jointly with higher precision than is possible using
independent models. However, accuracy actually depends on an adequate fit of the
model to datasets. We first investigated bias of parameters obtained from integrated
population models when specific assumptions are violated. For instance, a model may
assume that all females reproduce although there are non-breeding females in the pop-
ulation. Our second goal was to identify which diagnostic tests are sensitive to detect
violations of the assumptions of IPMs. We simulated data mimicking a short- and a
long-lived species under five scenarios in which a specific assumption is violated. For
each simulated scenario, we fitted an IPM that violates the assumption (simple IPM)
and an IPM that does not violate each specific assumption. We estimated bias and
uncertainty of parameters and performed seven diagnostic tests to assess the fit of the
models to the data. Our results show that the simple IPM was quite robust to violation
of many assumptions and only resulted in small bias of the parameter estimates. Yet,
the applied diagnostic tests were not sensitive to detect such small bias. The viola-
tion of some assumptions such as the absence of immigrants resulted in larger bias
to which diagnostic tests were more sensitive. The parameters informed by the least
amount of data were the most biased in all scenarios.We provide guidelines to identify
misspecified models and to diagnose the assumption being violated. Simple models
should often be sufficient to describe simple population dynamics, and when data are
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abundant, complex models accounting for specific processes will be able to shed light
on specific biological questions.

Keywords Density-dependence · Diagnostic tests · Goodness of fit · Immigration ·
Non-breeders · Recapture heterogeneity

1 Introduction

Integrated populationmodels (IPMs) describe population dynamics based on the popu-
lationmodel assumed by themodeller and the usefulness of the available data (Besbeas
et al. 2002; Schaub and Abadi 2011; Schaub and Kéry in press). Thus, any incon-
gruence between the population ecology (e.g. life cycle, mating system, individual
homogeneity and independence, etc.) and the model or inadequate modelling of the
protocol of data collection has the potential to bias the estimates of population param-
eters. This will potentially lead to wrong conclusions or management/conservation
decisions (Besbeas and Morgan 2014). While ecologists know that models come with
assumptions that must be reasonably satisfied, consequences of their violation become
vague as themodel complexity increases includingmultiple datasets, many parameters
and dependencies between them.

The essence of IPMs is to combine several datasets to inform a population model
(Besbeas et al. 2002; Schaub and Kéry in press). The datasets originate from the
population level (e.g., population count data) and from the individuals level (e.g.,
capture-recapture data, productivity data). IPMs are widely applied in population
ecology (Schaub and Abadi 2011; Zipkin et al. 2019) because they describe transient
dynamics and make possible to determine the influence of different environmental
factors and of the contribution of each demographic rate and of population structure
to population dynamics (Koons et al. 2016, 2017). This combination of data allows
the estimation of demographic parameters with higher precision. It also provides the
possibility to estimate parameters that would not be estimable by the separate analysis
of the given datasets (Besbeas et al. 2002; Abadi et al. 2010a). IPMs have been used
to investigate density-dependent effects (Abadi et al. 2012; Gamelon et al. 2016), and
to estimate parameters for which no data were available (Tavecchia et al. 2009) such
as immigration (Abadi et al. 2010b). However, the biases in these hidden parameter
estimates are not systematically checked (Gamelon et al. 2016), and their accuracy
and interpretation are more and more questioned (Riecke et al. 2019).

IPMs are increasingly used in conservation and management studies because they
result in more accurate population viability analysis (Tempel et al. 2014; Arnold et al.
2018; Saunders et al. 2018; Zipkin et al. 2018; Plard et al. 2019a; Schaub and Ullrich
in press). The combination of multiple dataset allow integrating different sources of
information in populations where data are rare and sparse over time and space (Schaub
et al. 2007). Data deficiency is a major challenge in conservation studies and IPMs
have managed to provide insightful knowledge about population demography and
status (Rhodes et al. 2011; Duarte et al. 2017). However, data deficiency is also one
of the first sources of uncertainty and bias. Thus, we need to better understand how
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different amount of data combined in IPMs influence estimates of demographic rates
(Fletcher et al. 2019; Saunders et al. 2019).

The joint likelihood of the IPM is often created as the product of the likelihood of
each dataset (Besbeas et al. 2002), assuming that the different datasets are indepen-
dent. In reality, the independence assumption is almost always violated. Reproductive,
survival and count data often partly involve the same individuals from one popula-
tion which can result in the violation of the independence assumption. Nevertheless,
previous simulations (Abadi et al. 2010a; Plard et al. 2019c; Weegman et al. 2021)
suggested that IPMs are robust to the overlap of individuals in different data sets. Yet,
the consequences of the violations of other assumptions on which IPMs rely on have
only partially been investigated (Riecke et al. 2019; Schaub and Kéry in press).

When one builds an IPM, one often makes three different series of assumptions. A
first one refers to the use of parametric distributions for demographic and observation
parameters (Besbeas and Morgan 2014). For instance, the distributions of clutch or
litter sizes can be underdispersed as compared to the modelled one using a Poisson
distribution (Kendall and Wittmann 2010). Another example is the use of the a spe-
cific distribution for modeling the sampling error (e.g., Gaussian vs. Poisson) that
may bias estimates of demographic parameters and population abundance when it is
not appropriate (Maunder and Piner 2017). A second series of assumptions are neces-
sary about various forms of heterogeneity of demographic and observation parameters
(Besbeas and Morgan 2014; Maunder and Piner 2017). For a given population model,
demographic parameters may be assumed to be homogeneous while in reality they
vary spatially or temporally. Conflicts among datasets may emerge if data have been
collected at different times or locations but also by different people. Within one
population, individuals may be heterogeneous, consistently showing higher or lower
reproduction. When disregarded, such heterogeneity has the potential to bias predic-
tions of population dynamics (Sæther et al. 2004; Vindenes et al. 2008; Kendall et al.
2011). Both series of assumptions are common to many statistical and demographic
models and need to be carefully checked.

A third series of assumptions is more specific to IPMs and concerns the population
model (Carvalho et al. 2017). In the present paper, we will study the robustness of IPM
to violation of this last series of assumptions. Because an IPM combines different data
sets, we need to assume that the population model corresponds to the true underlying
data generating process of each data set. For instance, we may assume that all females
reproduce or the absence of density-dependencewhile in reality there are non-breeders
or density-dependent processes. Riecke et al. (2019) has already warned about conse-
quences for parameter estimates when some assumptions are violated. They showed
that estimates of hidden parameters (such as immigration or breeding probability) are
biased when processes, such as mark loss, were not accounted for. However, when
we build a model, how do we know that we are not missing demographic processes?
How do we know that the model we used is correct and produces relatively unbiased
results?

Diagnostic tests can evaluate the fit of a model to the data and identify possible
conflicts between datasets (Besbeas and Morgan 2014; Carvalho et al. 2017; Schaub
and Kéry in press). A first possibility is to perform goodness of fit tests on each dataset
(Besbeas andMorgan 2014). They can indicate heterogeneity in reproduction, survival
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and recapture, but they can be challenging to apply to complex models. Another
useful check has been proposed in fisheries research to assess stock abundance: the
comparisons of parameter estimates from integrated and single data models (Carvalho
et al. 2017).

In this paperwe pursued three objectives.Our first goalwas to understand howmuch
parameter estimates are biased when an IPM is misspecified. Suppose that we assume
all females reproduce but there are non-breeding females in the population.Or, suppose
that some females are double brooding and we do not include this process. What are
the consequences on estimates of survival and productivity? Our second goal was
to identify if some diagnostic tests have the power to identify violated assumptions.
Our third goal was to study the influence of data deficiency on parameter bias and
uncertainty. We investigated the impact of the violation of five assumptions linked to
the population model in IPMs using simulated data mimicking a short and a long-lived
species.

2 Methods

As a basis for the simulation, we considered two hypothetical populations of species
with a short-lived and a long-lived life-history. The short-lived species can be seen
as a passerine bird, the long-lived species as a large mammal. For both species we
distinguish between two age classes: juvenile (newborn fledgling or weaning) and
adult individuals. Juvenile survival (from fledgling or weaning to first-year) differs
from adult survival (after first-year) in both species. First breeding occurs at age one
and two years in the short- and the long-lived species, respectively. We assume that
reproductive performance is invariant with age from age at first reproduction in both
species.

We considered six different simulated scenarios: a null scenario and five scenarios
each with a different violation of a model assumption. We first present the simulation
study of the null scenario and then specify the assumption that is violated in each of
the five other scenarios. Second, we present the two different models used to analyze
the data for each scenario: I PM0: simple IPM; and one of I PM1-I PM5: an IPM that
is adjusted to the specific assumption of each scenario, hence a model that fits better
than I PM0. Third, we describe the diagnostic tests that we used to assess the fit of
each model.

2.1 Generating the data with the null scenario

2.1.1 Simulation of each population

For each scenario, we simulated data from our hypothetical short-lived (parameters
given with lower case letters) and long-lived (parameters given with capital letters)
species. We described the female part of the population and adopted a model for a
post-breeding census. All scenarios shared the following steps: in year 0, each pop-
ulation was composed of 300 females with ages distributed according to the stable
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age distribution of the scenario. The annual number of juvenile (φ j
t+1/Φ

J
t+1) and adult

(φa
t+1/Φ

A
t+1) survivors from t to t + 1 was simulated with Binomial distributions with

probabilities s j = 0.1 and SJ = 0.5 for the juvenile survival of the short- and long-
lived species, respectively and sa = 0.4 and Sa = 0.9 for the adult survival of the
short- and long-lived species, respectively. For the short-lived species, for instance:

φ
j
t+1 =Bin(s j , n j

t )

φa
t+1 =Bin(sa, nat ) (1)

where n j
t and nat are the annual number of juvenile and adult females in year t.

Surviving females reproduce and their annual reproductive success (number of
female fledglings or weaned newborn females per mother i , wi,t /Wi,t ) was modelled
with a Poisson distributionwithmean r = 6, and aBinomial distribution of probability
R = 0.22, for the short- and long-lived species, respectively.

wi,t =Pois(r)

Wi,t =Bin(R, 1) (2)

The populations were simulated for 15 years and the resulting population growth
rates were 1 for both species. In all scenarios and for both populations we assumed
absence of emigration. Moreover, in the null scenario, we assumed absence of immi-
gration. Because population growth rates were 1 in most scenarios, annual population
sizes remained around 300 individuals with nat = 42 adults and n j

t = 258 juveniles

in the short lived species and Na
t = 249 adults and N j

t = 51 juveniles in the long-
lived species. These proportions corresponded to the stable age distributions of each
population. In our main analysis, we chose to simulate a relative large number of indi-
viduals that allows accurate estimation of the demographic rates. Then, we performed
a second analysis using a lower number of individuals monitored to study the influence
of data deficiency on bias and uncertainty in estimates (see Sect. 2.5).

2.1.2 Simulation of the data collection in each population

Data collection was simulated to mimic realistic field sampling processes. Annually,
we sampled some females from the population to obtain the capture-mark-recapture,
the reproductive and the population count datasets. Binomial trials were used to select
the females that belonged annually to each dataset.

The capture-mark-recapture dataset was obtained by the annual capture of newborn
and adult females. The recapture probability was set to ps = 0.5, corresponding to a
moderate effort of capture of about 150 females annually in both species. On average,
this resulted in the long-lived species in a total of 742 (SD=40) females that were
captured at least once (with an average of 3 captures per female). About 15 females
were captured between 8 and 13 times. For the short-lived species, an average of 2086
(SD=776) females were captured at least once in total (with an average of 1.1 capture
per female) and about 34 females were captured between 3 and 6 times.
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Independently of the capture of females for the capture-mark-recapture data, repro-
ductive successes data were sampled for a proportion of 50% (pr = 0.5) of females,
resulting on average in 110 (SD=5) and 22 (SD=8) mothers monitored annually in the
long-lived and short-lived species, respectively. The reproductive dataset included the
annual numbers of monitored mothers (mt = Bin(pr , nat ) and Mt = Bin(pr , N A

t ))
and of their female newborns ( ft and Ft ; obtained by summing the numbers of female
newborns of the mothers monitored).

The population count dataset was the annual total (juvenile + adult) number
of females counted at the same time when the reproductive success data were
recorded. Independently of the two other datasets, a proportion of 50% (pc = 0.5,
about 150 females annually for both species) of the females were counted annually:
ct = Bin(pc, nat + n j

t ) and Ct = Bin(pc, N A
t + N j

t ).

2.2 Generating the data with five different scenarios

Five different scenarios commonly occurring inwild populationswere simulated. Each
of them violated a specific assumption of the null scenario. In scenarios 1 and 2, the
manner of data collection differed from the null model. In scenarios 3, 4 and 5, the
population model differed from the null model. Here, we describe how each scenario
differs from the null scenario.

1. Heterogeneity in recapture In many monitoring programs of bird species, capture
and recapture of individuals occur at or close to nests and target reproducing indi-
viduals. Consequently, only adult females that successfully reproduce (produced at
least one fledgling or weaned juvenile) are captured as unsuccessful females leave
breeding locations before they could be captured. This sampling protocol violates
the assumption of recapture homogeneity, i.e. that all females have the same recap-
ture probability. For adult females we used ps = 0.5 if ωi,t > 0 and ps = 0 if
ωi,t = 0. For all newborn females, the probability of first capture at independence
was kept equaled to 0.5 in both species.

2. Heterogeneity in timing of data collection Counts and recaptures can occur in
different seasons. For instance, recaptures in mammals often occur before females
lactate to limit the disruption of reproduction and counts are often performed when
vegetation is less dense to maximize detection probability. In this scenario, data
were collected during different seasons. Count of females occurred sixmonths after
the annual capture sessions (Fig. S9). Survival was assumed to be homogeneous
within the year. The equations used to simulate the data correspond to equations
used in the statistical model to estimate the demographic rates, see Eqs. (9) and
(10).

3. Immigration influences the dynamics ofmostwild populations (Ward 2005; Schaub
et al. 2006; Grotan et al. 2009; Millon et al. 2019). In this scenario, the populations
were assumed to be open, and annually a proportion of 20% (immigration rate:
ω = 0.2) females enters the population as adults. Thus, as survival and reproductive
success were kept at the same values the population increased in this scenario. The
numbers of immigrants was: nit = Pois(ωnat ) and N I

t = Pois(ωN A
t ) in the short-

and long-lived species, respectively.
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4. Non-breedersNon-breeders occur in many populations. If a population model does
not include existing non-breeders, the modelled dynamics can be strongly biased
(Lee et al. 2017). However, non-breeders are rarely included in the reproductive
dataset because these individuals are often absent from the breeding areas. In this
scenario, we assume that some females do not reproduce. The number of breeding
females was simulated using a Binomial distribution with the breeding probability
ψ = 0.8. The annual number of reproductive females was nart = Bin(ψ, nat ) and
N AR
t = Bin(ψ, N P

t ) in the short- and long-lived species, respectively. N P
t is the

annual number of mature (older than 1 year old) females in the long lived species.
Annual individual reproductive successes wi,t/Wi,t were simulated only for these
reproductive females with a Poisson distribution of mean r = 7.5, and a Binomial
distribution of probability R = 0.275, in the short- and the long-lived species,
respectively, to maintain a population growth rate of 1.

5. Density-dependence Density-dependent effects are common in most populations
and density-dependence is one of themain drivers of population dynamics (Turchin
1995). In this scenario, reproductive success is negatively influenced by the size
of the total population (n or N ). We used the linear model log(r) = α + β ∗ n
(α = log(6), β = −0.5) for the short-lived species and logi t(R) = A + B ∗ N
(A = logi t(0.22), B = −0.5) for the long-lived species.

2.3 Statistical models

The simulated datasets corresponding to the null scenario without any violation of
assumptions were analysed onlywith I PM0, while the simulated datasets correspond-
ing to one of the five scenarios with the violation of a specific assumption were each
analysed with I PM0 and I PMi (i = 1 to 5, corresponding to the 5 scenarios), hence
with a model that does not violate the assumptions (I PMi ) and with one model that
violates a specific assumption (I PM0).

Simple IPM (I PM0) The likelihood of the IPM is the joint likelihood of the three
datasets given values of the demographic parameters. We estimated the unknown
demographic rates s̃ j ; S̃ J , s̃a; S̃a , and r̃; R̃, the unknown recapture probability p̃s ,
and an index of population size (i.e., the latent variable ñ ≈ pc ∗ n and Ñ ≈ pc ∗ N in
the short- and the long-lived species, respectively). Note that in our IPMs, we cannot
estimate true population size as pc and n/N are not identifiable. The population
model of this simple IPM is defined as a state-space model and corresponded to the
null scenario we presented above.

– The state process model is identical to the following annual matrix projection
model for the short-lived species:

[
ñ j
t+1

ñat+1

]
=

(
s̃ j r̃ s̃ar̃
s̃ j s̃a

) [
ñ j
t

ñat

]

where in year t the number of newborns (weaning/fledgling) is ñ j
t , and the number

of adults is ñat . In the annual matrix projection model for the long-lived species
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females do not reproduce in their first year:

[
Ñ J
t+1

Ñ A
t+1

]
=

(
0 S̃ A R̃
S̃ J S̃ A

) [
Ñ J
t

Ñ A
t

]

All demographic parameters are assumed to be constant. Including demographic
stochasticity, the population projection for the short-lived species gets:

ñat+1 ∼Bin(s̃a, ñat ) + Bin(s̃ j , ñ j
t )

ñ j
t+1 ∼Pois(r̃ ∗ ñat+1) (3)

For the long-lived species, Ñ Y is the annual number of yearling females that do
not reproduce and Ñ P is the annual number of mature females older than 1 year
old (Ñ A

t = Ñ P
t + Ñ Y

t ):

Ñ Y
t+1 ∼ Bin(S̃ J , Ñ J

t )

Ñ P
t+1 ∼ Bin(S̃ A, Ñ P

t + Ñ Y
t )

Ñ J
t+1 ∼ Bin(R̃, Ñ P

t+1) (4)

– The state-space observation model links the true population size with the annual
number of observed females (count data, ct and Ct ) using a Gaussian distribution
with a standard deviation σ̃ corresponding to the observation (residual) error. For
the short-lived species:

ct ∼ Norm(ñ j
t + ñat , σ̃ ) (5)

For the long-lived species:

Ct ∼ Norm(Ñ J
t + Ñ Y

t + Ñ P
t , σ̃ ) (6)

We also performed all analyses using the Poisson distribution (rather than the
Gaussian) to investigate whether a less flexible residual error modifies the results.
Because results were similar, we report here only the results for the Gaussian
distribution. Results using a Poisson distribution can be found in the supplementary
material (Fig. S5-S9).
We used the likelihood of a generalized linear model for the reproductive dataset.
The reproductive dataset included the annual numbers of female newborns ( ft and
Ft ) and of monitored mothers (mt and Mt ). A Poisson and a Binomial distribution
linking r̃ and R̃ to the observed annual reproductive success were used to estimate
reproductive success:

ft ∼Pois(r̃ ,mt ) (7)

Ft ∼Bin(R̃, Mt ) (8)
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We transformed the capture-mark-recapture dataset into the m-array format and
used a multinomial likelihood to estimate survival and recapture probabilities. For
a detailed explanation of the transformation of capture-mark-recapture data into
the m-array format and the use of the multinomial likelihood, see e.g. Kéry and
Schaub (2012) (Chap. 7.10). This model assumes a survival probability that differs
between the two age classes and a constant recapture probability.

IPMi A different I PM was created for each scenario. These models were similar
to the I PM0, but not misspecified with respect to each particular scenario. We now
describe how each of them differed from I PM0.

– I PM1:Heterogeneity in recaptureOnly females that successfully reproducedwere
available to be captured with probability p̃s . Because recapture was restricted to
reproducing females, the recapture probability was equal to p̃s ∗ (1 − exp(−r̃))
and p̃s ∗ R̃ for the short- and the long-lived species, respectively. For the short-
lived species, the probability of successful reproduction is 1 − exp(−r̃) because
exp(−r̃) is the probability that a female had no reproductive success. For the
long-lived species, R̃ is the probability of successful reproduction.

– I PM2: Heterogeneity in the timing of data collection We assume that survival is
homogenous within the year and the population size is calculated after 6 months
when count data are collected. Thus, in this IPM, population projections for the
short-lived species are given by:

ñat+1 ∼ Bin(
√
s̃a, ñ

√
a

t ) + Bin(
√
s̃ j , ñ

√
j

t )

ñ j
t+1 ∼ Pois(r̃ ∗ ñat+1))

ñ
√
a

t+1 ∼ Bin(
√
s̃a, ñat+1)

ñ
√

j
t+1 ∼ Bin(

√
s̃ j , ñ j

t+1))

ct ∼Norm(ñ
√

j
t + ñ

√
a

t , σ̃ ) (9)

where ñ
√

j and ñ
√
a are the annual numbers of newborn and adult females after 6

months when the count data are collected. For the long-lived species:

Ñ Y
t+1 ∼ Bin(

√
S̃ J , Ñ

√
J

t )

Ñ P
t+1 ∼ Bin(

√
S̃ A, Ñ

√
P

t + Ñ
√
Y

t )

Ñ J
t+1 ∼Bin(R̃, Ñ A

t+1)

Ñ
√
Y

t+1 ∼Bin(

√
S̃ A, Ñ Y

t+1)

Ñ
√
P

t+1 ∼Bin(

√
S̃ A, Ñ P

t+1)

Ñ
√
J

t+1 ∼Bin(
√
S̃ J , Ñ J

t+1)

Ct ∼Norm(Ñ
√
J

t + Ñ
√
Y

t + Ñ
√
P

t , σ̃ ) (10)
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where Ñ
√
Y and Ñ

√
P are the annual numbers of yearling and mature females,

respectively, when the count data are collected.
– I PM3: Immigration The observation model that links the count to the true state
of the population (Eqs. (5) and (6)) includes the number of immigrants (ñi ;Ñ I )
which is estimated from the hidden immigration rate ω̃ (i.e., without an explicit
dataset that is informative about that parameter). For the short-lived species:

ct ∼ Norm(ñ j
t + ñat + ñit , σ̃ )

ñit ∼ Pois(ω̃ñat ) (11)

For the long-lived species:

Ct ∼ Norm(Ñ J
t + Ñ Y

t + Ñ P
t + Ñ I

t , σ̃ )

Ñ I
t ∼ Pois(ω̃(Ñ Y

t + Ñ P
t )) (12)

– I PM4:Non-breedersThis IPM includes a supplemental step to estimate the annual
number of breeding females (ñar ) from the annual breeding probability ψ̃ . ψ̃ is
again estimated as a hidden (or latent) parameter. For the short-lived species:

ñart+1 ∼ Bin(ψ̃, ñat+1)

ñ j
t+1 ∼ Pois(r̃ ñart+1) (13)

For the long-lived species:

Ñ AR
t+1 ∼ Bin(ψ̃, Ñ P

t+1)

Ñ J
t+1 ∼ Bin(R̃, Ñ AR

t+1) (14)

– I PM5: Density-dependence Reproductive success is influenced by the size of the
population and we use a linear regression model for this relationship. For the
short-lived species:

log(r̃t ) = α̃ + β̃(ñ j
t−1 + ñat−1) (15)

For the long-lived species:

logi t(R̃t ) = Ã + B̃(Ñ J
t−1 + Ñ Y

t−1 + Ñ P
t−1) (16)

2.4 Diagnostic tests

For each IPM, we performed seven diagnostic tests.We first conducted five commonly
applied goodness of fit tests (GOF) using Bayesian p values (Brooks et al. 2000). Sec-
ond, we compared estimates of survival (juvenile and adult survival) and reproductive
success from the IPMs with estimates of these parameters from single data models,
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i.e. Cormack–Jolly Seber models for survival and regression models for reproductive
success. To shorten the results, we only present the diagnostic tests for survival, as
estimates of adult or juvenile survival were always more biased than reproductive
success.

– GOF Following Besbeas and Morgan (2014), we used posterior predictive checks
(Gelman et al. 1996) to test the fit of the models to the different datasets. The basic
idea for a posterior predictive check is that for each combination of estimated
parameters (demographic rates and recapture probability), a dataset is simulated
[see Besbeas and Morgan (2014), Kéry and Schaub (2012), Schaub and Kéry (in
press) for detailed explanation]. For each combination of estimated parameters,
we can estimate a discrepancy measure between the expected values (EXi ) and
observed data (OB) and a discrepancymeasure between the expected values (EXi )
and the simulated dataset (OBi ). When a model fits the data, one can expect that
half of the points of a scatter plot of the two discrepancy measures to lie above
the line of unit slope. The proportion of points above the line of unit slope is the
Bayesian p value.
Following Besbeas and Morgan (2014) we used the Freeman–Tukey statistic
(DFT = ∑

(
√
OBi − √

EXi )
2) for the capture-mark-recapture and the repro-

ductive datasets as discrepancy measures. We also used an alternative Pearson
chi-squared test for the reproductive dataset. The Pearson chi-squared could not
be used for the capture-mark-recapture datasets because they include a large
number of zeros when no individuals were recaptured. For the population count
data, we used two discrepancy measures: the mean absolute percentage error

(DMAPE = 100
T

∑T
t=1

∣∣∣ OBi,t−EXi,t
OBi,t

∣∣∣, where T is the number of non-missing pre-

dictions), and the maximum percentage error (DMPE = 100max OBi,t−EXi,t
OBi,t

)
(Besbeas and Morgan 2014). The population count dataset (c;C) corresponded to
the observed data OB, while ñ/Ñ were the expected values EX . Then, we used
the distribution of demographic rates to simulate a new Ñi using the state pro-
cess model of each IPM and then we simulated OBi with the observation model.
For these five goodness of fit tests we treated a model as misspecified when the
Bayesian p-value was above 0.975 or below 0.025.

– Single data models Conflicts among different data are inferred by comparing the
demographic parameters estimated from an IPM to those estimated from a model
analysing the capture-mark-recapture dataset and the reproductive dataset sepa-
rately. In other words, we compared the estimated parameters obtained from the
IPMs to those obtained frommodels excluding the count data. We transformed the
capture-mark-recapture data into an m-array and used a multinomial likelihood
that had the same structure as the corresponding model component in I PM0. The
reproductive datasets were analysed with generalized linear models identical to
the model components for reproduction in I PM0. Because the largest bias was
always observed in the survival parameters, we performed two diagnostic tests
using juvenile and adult survival parameters. We considered a model as misspec-
ified when less than 75% (increasing this value did not change our conclusions)
of the posterior distribution of each survival parameter estimated from the IPM
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overlapped with the posterior distribution of each survival parameter estimated
from the single data model.

2.5 Analysis

We performed 1000 simulations over 15 years under each of these six scenarios for
both species. We sampled individuals to yield capture-mark-recapture, reproduction,
and count datasets. To assess the performances of I PM0 and I PM1−5, we first
compared the bias (posterior mean − truth) and precision (mean squared errors
MSE = bias2 + variance) of comparable parameters: mean recapture probability,
mean juvenile and adult survival, and mean reproductive success. For the scenario 5
including density-dependent effect, we could not compare annually variable reproduc-
tive successes estimated from I PM5 with the constant reproductive success estimated
from I PM0. Second, to investigate the influence of small datasets, we resampled 20%
of the simulated sampled females of the reproductive and capture-mark-recapture
datasets in each population. These data were analyzed again with the two correspond-
ing IPMs as for the original dataset using the following combinations. (i) We included
20% of the capture-mark-recapture data and all the count and reproductive data. This
would correspond to set ps = 0.1 while pr = pc = 0.5. (ii), we included 20% of the
reproductive data and all count and capture-recapture data. This would correspond to
set pr = 0.1 while ps = pc = 0.5. Third, we performed the 7 diagnostic tests on all
models. In order to understand how the different scenarios influenced the diagnostic
tests, we report the number of simulations when amodel was evaluated asmisspecified
for each scenario.

Wefit allmodels in theBayesian framework anddefined the followingprior distribu-
tions.We used uniformdistributions over the interval [0,1] as priors for all probabilities
and uniform distributions over the interval [0,10] as priors for reproductive success of
the short-lived species. We used uniform distributions over the interval [0,C1] where
C1 is the number of females counted in the first year as priors for the number of
females of each age class in the first year (ña1, ñ

a
1, Ñ

J
1 , Ñ

Y
1 , Ñ

P
1 ). For the scenario

including a density-dependent effect, we used the Gaussian distribution with mean 0
and standard deviation 100 as priors for α, β, A, and B (Kéry and Schaub 2012). We
generated three chains of length 25,000, discarding the first 12,500 samples as burn-
in. Convergence of all chains was assessed using the Gelman and Rubin convergence
diagnostic (R<1.1, Gelman and Rubin 1992). We fit the models using NIMBLE (de
Valpine et al. 2017) run from R (R Core Team 2019).

3 Results

3.1 Accuracy and precision of the IPM under different scenarios

In the null scenario, the simple I PM0 gave unbiased demographic parameters (Figs.
1, 2, left panels) with higher precision (Figs. 3, 4, left panels) compared to single
data models. The higher precision of parameters obtained from IPMs compared to
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Fig. 1 Comparison of bias for estimates of recapture probabilities, juvenile and adult survival, and repro-
ductive success in a short-lived species. 6 scenarios are shown: null scenario, 1: Heterogeneity in recapture
when only breeders are recaptured 2: Heterogeneity in timing of the collection of the three datasets. 3:
Immigration influences population dynamics. 4: Non-breeders influence population dynamics: breeding
probability < 1. 5: Density-dependent effect on reproductive success. Parameters were estimated under
single data CMR and reproduction models (SD, white), simple I PM0 (beige) and I PMi (red). Violin plots
show the distributions of mean bias over 1000 simulations. The median of each distribution is shown with
a black point
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Fig. 2 Comparison of bias for estimates of recapture probabilities, juvenile and adult survival, and repro-
ductive success in a long-lived species. 6 scenarios are shown: null scenario, 1: Heterogeneity in recapture
when only breeders are recaptured 2: Heterogeneity in timing of the collection of the three datasets. 3:
Immigration influences population dynamics. 4: Non-breeders influence population dynamics: breeding
probability < 1. 5: Density-dependent effect on reproductive success. Parameters were estimated under
single data CMR and reproduction models (SD, white), simple I PM0 (beige) and I PMi (red). Violin plots
show the distributions of mean bias over 1000 simulations. The median of each distribution is shown with
a black point
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Fig. 3 Comparison of mean square errors (MSE) for estimates of recapture probabilities, juvenile and
adult survival, and reproductive success in a short-lived species. 6 scenarios are shown: null scenario, 1:
Heterogeneity in recapture when only breeders are recaptured 2: Heterogeneity in timing of the collection
of the three datasets. 3: Immigration influences population dynamics. 4: Non-breeders influence population
dynamics: breeding probability < 1. 5: Density-dependent effect on reproductive success. Parameters
were estimated under single data CMR and reproduction models (SD, white), simple I PM0 (beige) and
I PMi (red). Violin plots show the distributions of mean MSE over 1000 simulations. The median of each
distribution is shown with a black point
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Fig. 4 Comparison of mean square errors (MSE) for estimates of recapture probabilities, juvenile and
adult survival, and reproductive success in a long-lived species. 6 scenarios are shown: null scenario, 1:
Heterogeneity in recapture when only breeders are recaptured 2: Heterogeneity in timing of the collection
of the three datasets. 3: Immigration influences population dynamics. 4: Non-breeders influence population
dynamics: breeding probability < 1. 5: Density-dependent effect on reproductive success. Parameters
were estimated under single data CMR and reproduction models (SD, white), simple I PM0 (beige) and
I PMi (red). Violin plots show the distributions of mean MSE over 1000 simulations. The median of each
distribution is shown with a black point
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single data models was verified for all scenarios. Recapture and adult survival were
estimated with higher accuracy in the long-lived compared to the short-lived species
while juvenile survival was estimated with higher accuracy and precision in the short-
lived than in the long-lived species.

1. Heterogeneity in recapture In the scenario where only breeders were recaptured,
the simple I PM0 resulted in unbiased estimates of demographic parameters in the
short-lived species (Fig. 1, second column). Indeed the assumption of recapture
homogeneity was very weakly violated in this species. The recapture probabil-
ity was only slightly different from 0.5 for all females (pS ≈ 0.49875) because,
most females successfully reproduced (Probability of successful reproduction was
1 − exp(−6) ≈ 0.9975). By contrast, the probability of successful reproduction
for females older than 1 year was 0.22 in the long-lived species. Thus, the recapture
probability was highly heterogeneous in this species as 22% of the mature females
had a recapture probability of 0.5 while 78% had a recapture probability of 0 (mean
recapture probability ≈ 0.11). Yearling females also had a recapture probability of
0 because they did not reproduce. A direct consequence was that both the single
data model and the simple I PM0 under-estimated the recapture probability (Fig. 2,
second column, − 0.40[− 0.42:− 0.38] and − 0.40[− 0.42:− 0.39], respectively)
(here and below mean and 95% interval of absolute bias over 1000 simulations
are given). The violation of the homogeneous recapture assumption in the single
data model and in the I PM0 also resulted in biased estimates of survival param-
eters: juvenile survival was under-estimated (− 0.07[− 0.17:0.06] and − 0.08[−
0.19:0.07]) and adult survival was over-estimated (0.02[− 0.01:0.05] and 0.02[−
0.01:0.04]). The I PM1 resulted in unbiased estimates of adult survival parameters
(bias lower than 0.01, on average). However, I PM1 erroneously assumed that the
recapture probability of yearling was p̃S ∗ R̃ ≈ 0.11 while in reality it was 0. The
assumption of homogeneity in recapture was thus weakly violated in I PM1 which
may explain why the distribution of bias in juvenile survival was very wide com-
pared to other scenarios (Fig. 2, second column). The estimates of the three main
demographic parameters from I PM1 were not more precise than the estimates
from the simple I PM0 (Figs. 3, 4, second column).

2. Heterogeneity in timing of data collection Estimates from the single data model,
I PM0, and I PM2 were similarly accurate regardless of whether count data were
collected at the same time as the two other datasets or at a different time (all biases
lower than 0.002, Figs. 1, 2, third column). Precisionwas slightly better from I PM2
than from I PM0 (Figs. 3, 4, third column).

3. Immigration Ignoring immigration led to the strongest bias in parameter estimates
of all scenarios considered here (Figs. 1, 2, fourth column). I PM0 translated the
assumed absence of immigration into a lower recapture probability and higher
survival and reproductive success. For the short-lived species, the recapture prob-
ability (− 0.06[− 0.09:− 0.02]) was the most biased parameter, followed by adult
survival (0.02[-0.01:0.05]), juvenile survival (0.02[0.01:0.03]) and reproductive
success (0.03[− 0.12:0.16]). For the long-lived species, juvenile survival showed
the highest bias (0.1 [0.11:0.16]). Adult survival (0.02[0.02:0.03]), reproductive
success (0.04[0.03:0.05]) and recapture probability (− 0.02 [− 0.03:− 0.01]) were
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all similarly biased. Both the single data model and the I PM3 including immigra-
tion resulted in accurate (bias lower than 0.002 for all parameters) andmore precise
(Figs. 3, 4, fourth column) parameter estimates than I PM0. The single-data mod-
els showed no bias because their underlying assumptions were met. Single data
model used only the capture-mark-recapture data or the reproductive data and did
not use count data. Thus, contrary to I PM0, the single data model did not use the
information of the count data that the population was increasing at a higher rate
than expected by the survival and reproductive rates. Using I PM3, the estimate of
the immigration rate had large uncertainty, and was slightly biased, the latter being
larger in the short- than the long-lived species (bias in ω̃: − 0.01[− 0.12:0.15] and
0.001[− 0.002:0.002] for the short- and the long-lived species, respectively).

4. Non breeders In the presence of non-breeders I PM0 under-estimated all demo-
graphic parameters with the highest bias appearing in adult survival (− 0.02[−
0.10:0.04]) and reproductive success (− 0.07[− 0.60:0.34]) in the short-lived
species and in juvenile survival (− 0.02[− 0.07:0.05]) in the long-lived species
(Figs. 1, 2, fifth column). Bias occurred because of a conflict among datasets.
Information about reproductive success r̃ corresponded to r when originating from
the reproductive dataset because only reproducing individuals were included, while
it corresponded to ψ ∗ r when the information originated from the count data set.
The resulting estimate was somewhere between these two values. To compensate
the bias in reproductive success r̃ and to achieve a close fit of the estimated popu-
lation size with the observed counts, s̃ j , s̃a , and p̃S were also biased in I PM0. By
contrast, both the single data models and the I PM4 provided accurate estimates of
demographic parameters (bias lower than 0.002). Breeding probability estimated
from I PM4 was more accurate for the long- than the short-lived species (bias in
ψ̃ :− 0.06[− 0.35:0.14] and− 0.003[− 0.12:0.14] for the short- and the long-lived
species, respectively). I PM4 estimated the parameters with higher precision than
the single data models but not than I PM0 (Figs. 3, 4, fifth column).

5. Density-dependence The simple I PM0 estimated constant reproductive success
and thereforewas unable to properly estimate the density-dependent effect on repro-
ductive success but it resulted in unbiased estimates of average survival parameters
for both species (Figs. 1, 2, last column). The I PM5 estimated the regression
parameters of annual population density on reproductive success with relatively
high bias (β̃ : 0.03[− 0.08 : 0.32] and B̃ : − 0.38[− 1.40 : 0.30]) and uncertainty
(β̃ : 0.07[0.04 : 0.16] and B̃ : 0.89[0.53 : 2.71]), particularly for the long-lived
species. Indeed, because the population size varied more in the short-lived than in
the long-lived species due to demographic stochasticity (n = 350, temporal vari-
ability: SD = 14, and N = 298, SD = 2 in this scenario), the density-dependence
parameter was more difficult to estimate in the more stable long-lived species.

3.2 Sparse datasets

If only 20% of the capture-recapture data were included, the precision in all demo-
graphic parameters for all models I PM0 and I PM1−5 was reduced (Figs. S1–S4)
and the magnitude of bias changed for some parameters. The bias from I PM0 in
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Table 1 Percentage of models (from 1000 simulations) identified as misspecified by each diagnostic test
under different scenarios. See the main text for a full description of each scenario

survival and recapture parameters declined in scenario 1 (heterogeneity in recapture).
For the scenarios 3 and 4 (immigration or non-breeders), bias from I PM0 increased
for juvenile and adult survival but decreased for reproductive success. Surprisingly,
we found that fitting the “true” I PM1−5 resulted in higher bias than the simple I PM0
in some scenarios because the datasets were not large enough to inform all parame-
ters estimated. This was true for the estimates of juvenile survival in the long-lived
species in scenario 1 (heterogeneity in recapture; − 0.038[− 0.17:0.12] and 0.023[−
0.13:0.27] in I PM1 and I PM0, respectively), scenario 4 (non-breeders; 0.066[−
0.13:0.28] and − 0.011[− 0.07:0.05] in I PM4 and I PM0, respectively), and sce-
nario 5 (density-dependence; 0.013[− 0.12:0.19] and 0.008[− 0.12:0.19] in I PM5
and I PM0, respectively).

Including only 20% of the reproductive data resulted in lower precision in repro-
ductive parameters for all models I PM0 and I PM1−5 (Figs. S1–S4). The bias was
larger in estimates of reproductive success in scenarios 3 and 4 (immigration and
non-breeders) for both species.

3.3 Diagnostic tests

We classified a test to be useful if it correctly recognized a model as misspecified in
more than 95% of the simulations. Generally it appeared that the applied tests were
little sensitive to the evaluated model violations (Table 1).

GOF tests The maximum percentage error (MPE) tests were very sensitive to uncer-
tainty in demographic parameters. This test did not recognize I PM0 as misspecified
in any scenario but targeted I PM5 as misspecified when it was not. Other GOF tests
recognized I PM0 as misspecified only for the immigration scenario for the long-lived
species. The GOF test for capture-mark-recapture data identified I PM1 as misspeci-
fied when it was not for the long-lived species. The GOF tests for the reproductive data
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recognized both I PM5 and I PM0 as misspecified in scenario 5 for the short-lived
species.

Comparison testswith single datamodels recognized I PM0 asmisspecified only for
the immigration scenario of the long-lived species. They did not erroneously recognize
any model as misspecified when it was not.

4 Discussion

Our results show that simple IPMs were quite robust to the violation of most but not of
all assumptions that we evaluated. The use of an IPM that corresponded exactly to the
data generating model improved the estimates compared to the simple (wrong) IPM
often little, the notable exception being when immigration occurred. Unfortunately,
the evaluated diagnostic tests performed similarly and were not sensitive to detect
small bias and thus could not identify misspecified IPMs that produced only small
bias in parameter estimates. Nevertheless, violation of assumptions resulting in large
bias such as when an IPM wrongly assumes absence of immigration were correctly
identified by most diagnostic tests.

Among demographic parameters, the parameter with the largest bias was always
the parameter that was informed by the least amount of data, regardless of which
assumption was violated. However, the magnitude of bias depended both on the type
of assumption being violated and on the life-history of the studied species. For a
long-lived species, the scenario including immigration and a dependency between
recapture and reproductive success resulted in the largest bias when analysed with
a simple I PM0. For the short-lived species the scenarios including immigration or
non-breeders resulted in the largest bias when analysed with a simple I PM0.

Last but not least, our results show that complex models, even if correctly specified
can result in biased parameters if data are sparse (when only 20% of the CMR data
are used).

4.1 Generality and limits of our results

Tomaximize the generality of our results, we included in our simulations two different
life-histories and simulated data for 15 years, corresponding to a typical duration of
IPM studies, which is often between 10 and years (20 years: Tenan et al. 2017, 16
years: Plard et al. 2020, 15 years: Lieury et al. 2015; Hatter et al. 2017; Fay et al.
2019, 14 years: Duarte et al. 2016, 12 years: Brommer et al. 2017, 11 years: Cleasby
et al. 2017), even if some studies last longer (22 years: Tempel et al. 2014, 30 years:
Margalida et al. 2020) or shorter (7 years, Duarte et al. 2017). We chose to simulate a
relative large number of individuals (300 individuals) compared to population sizes of
empirical IPMs which was often between 20 and 300 individuals (in the articles cited
above). The simulated sample sizes were large enough to estimate correctly most
demographic rates, as shown by our results. Nevertheless, we performed a second
analysis with a lower number of individuals to study the influence of sample size on
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bias and uncertainty in estimates. We show that bias and uncertainty always increase
with declining amount of data, even in correctly specified models.

The scenario including heterogeneity in recapture showed that when the assumption
of homogeneity of recapture probability is violated, survival estimates are biased. This
is in accordancewith results of previous studies (Carothers 1973; Devineau et al. 2006;
Fletcher et al. 2012;Abadi et al. 2013). These studies have shown that the bias increases
with increasing heterogeneity in recapture probability and when the average recapture
probability decreases (Devineau et al. 2006; Fletcher et al. 2012).

In the scenario where the count dataset were collected six months later than the
reproductive and the capture-mark-recapture datasets, I PM0 produced accurate esti-
mates of reproductive success and of survival probabilities. Because we assumed
constant survival probabilities before and after the collection of the count data, the
variation in the number of counted females was proportional to the variation in the
true population size at the time of recapture, which is why there was no bias in the
parameter estimates. However, bias in demographic parameters is expected under this
scenario if survival varies within the year (Gauthier et al. 2001; Rockwell et al. 2017;
Robinson et al. 2020).

The scenario including immigration showed that immigration will result in over-
estimation of all demographic rates if not accounted for (Abadi et al. 2010b; Schaub
and Fletcher 2015). This bias will increase as immigration rate increases. Bias in
demographic parameters were higher in the long-lived species characterized by a
higher proportion of adults and thus of immigrants, than in the short-lived species
characterized by a higher proportion of juveniles. Moreover, the bias in parameter
estimates is expected to change if immigrants have different survival and reproductive
success than residents (Grist et al. 2017; Rolandsen et al. 2017; Barbraud and Delord
2021).

In the scenario including non-breeders, I PM0 estimates of survival and reproduc-
tive success were only weakly biased because the breeding probability was high (0.8)
in our simulations. If individuals have a low breeding probability researchers generally
know that there are non-breeders in their study populations and therefore it is unlikely
that an IPM is misspecified with respect to non-breeders. We have chosen a relatively
high breeding probability for our simulations, hence considered a realistic scenario
where a researcher is not aware of non-breeders and therefore is likely to misspecify
an IPM. However, the higher the proportion of non-breeders in the population is, the
higher the resulting bias in estimated demographic rates becomes if non-breeders are
not explicitly included in the population model (Lee et al. 2017). The omission of non-
breeders biases all demographic rates as shown by our results using I PM0 because
the presence of non-breeders creates a conflict between the predicted population size
based on the wrong population model and the count data.

In the scenario including density-dependence, survival parameters were only
weakly biased. Indeed, I PM0 produced accurate estimates of average reproductive
success and therefore average survival probabilities remained unbiased. Nevertheless,
density-dependence has a higher potential to bias the estimated parameters if the popu-
lation size fluctuatesmore than in our simulations. Then, however, density-dependence
will also be easier to detect and to estimate.
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4.2 Bias of simple IPM0 andmodel complexity

IPMs are nowwidely and increasingly used in ecology and conservation to understand
the mechanisms that drive population dynamics ( Schaub and Abadi 2011; Abadi et
al. 2017; Bled et al. 2017; Koons et al. 2017; Arnold et al. 2018). They have been used
to make predictions about the future dynamics of populations (Schaub and Abadi
2011; Zipkin et al. 2019). Such predictions from IPMs are particularly valuable as
they correctly include the uncertainties due to parameter estimation (Saunders et al.
2018; Schaub and Kèry in press). Yet, it is crucial to know when an IPM gives biased
estimates to avoid wrong or misleading inference.

Our simulation results show that absolute bias in survival parameters obtained
from the simple I PM0 was below 0.05 on average for most scenarios. Nevertheless,
our scenarios are constructed to reflect the likely magnitudes of violation. If they
were larger (e.g., more immigrants or higher fraction of non-breeders), biases are
expected to increase. Formany demographic analyses, the simple I PM0 is expected to
produce accurate and robust results and hence the uncertainty is properly accounted for
when used for population projections, for example. The inaccuracy of these estimates
increases the fewer data are available, but this is true for all statisticalmodels. However,
when I PM0 is fitted, one cannot study specific demographic processes such as density-
dependence that may drive population dynamics. If such a process occurs and is
not included in an IPM, the projection of transient population dynamics may be
wrong (Hixon et al. 2002; Turchin 1995). More complex models are thus needed and
useful to answer specific questions such as how strong is the influence of individual,
environmental and population factors on population dynamics (Benton et al. 2006;
Evans et al. 2013; Barraquand and Gimenez 2019; Plard et al. 2019b).

Nevertheless, more complex models do not provide estimates of demographic
parameters with systematically higher accuracy. Moreover, when datasets are sparse,
our results showed that for some scenarios such as the density-dependent scenario,
complex models even if correctly specified gave estimates with larger bias than the
simple IPM. For this particular scenario, the estimates of density-dependent param-
eters were highly imprecise, particularly for the long-lived species. Thus, increasing
the complexity of IPMs needs substantial amount of data.

Finally, a complex model will never, by itself, estimate with accuracy processes
for which data are unavailable. When a demographic parameter is estimated that is
not directly informed by a dataset (hidden parameter), it may soak up inconsistencies
from other parts of the model. For example immigration can be biased when mark
loss in the capture-recapture data is not modelled adequately (Riecke et al. 2019).
Therefore, estimates of hidden parameters need to be interpreted with care (Schaub
and Kéry in press). Robinson et al. (2014) included a hidden parameter in studies
of several bird species and declared them as correction parameter that includes any
important demographic processes that are not captured by other parts of the model.
They assumed that unmeasured processes were mostly related to productivity and
specifically is due to the proportion of breeder for which no data were available. Thus,
a hidden parameter is useful to get a better fit of the model, but the labelling of this
parameter is speculative to some degree.
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4.3 Differences between long-lived and short-lived species

The demographic parameter that is the most biased depends on the data collected but
also directly on the life-history of the species studied. In populations of long-lived
species few offspring are produced, and hence there is naturally little information
about juvenile survival (Gaillard et al. 2000). In populations of short-lived species,
juvenile survival tended to be estimated with lower bias and higher precision because
a lot of newborns are produced and inform this parameter. At the opposite, sample size
for estimating adult survival is larger in long-lived species compared to that of short-
lived species. If an assumption is violated, the IPM tries to achieve a compromise. The
estimates are weighted averages based on the information that each dataset contributes
to that parameter. Thus, the parameters that are least informed by data can more easily
be pulled. As a consequence, juvenile survival and adult survival will respectively be
the parameter with the highest biased in long- and short-lived species, respectively.
Yet, as stated above, this differs when the model contains a hidden parameter. Then
the hidden parameter is the one that is least informed by data and more easily pulled
and thus potentially biased.

Our results also show that the same violated assumption can have different impact
on short and long-lived species, in accordance with another study (Earl 2019). In
the scenario including recapture heterogeneity for instance, I PM0 produced biased
estimates mainly for the long-lived species. In the scenario including non-breeders,
I PM0 gave biased estimates mainly for the short-lived species. This is particularly
apparent when only 20% of the survival or the reproductive data are included. The
population growth rate is differentially sensitive to changes in demographic rates
and the sensitivities depend on the life-history of the species. Generally, population
growth rates of long-lived species are more sensitive to changes in adult survival and
those of short-lived species to changes in recruitment related parameters (juvenile
survival, reproductive success) (Saether and Bakke 2000). Therefore, the violation of
an assumption that results primarily in a bias of adult survival is expected to be worse
for the predicted dynamics of a long-lived than of a short-lived species, while the
inverse is true for an assumption that affects mostly juvenile survival or reproductive
success.

4.4 How can we know that amodel is wrong?

The application of generic goodness of fit tests is the first step to identify whether a
model is wrong (Gelman et al. 1996; Brooks et al. 2000; Johnson and Omland 2004;
Kéry and Schaub 2012; Besbease and Morgan 2014). However, the various tests we
have evaluated were not very sensitive to small bias and the violating assumption(s)
could not be identified by using them. In most cases the parameter with the largest
uncertainty or that is least informed by the data will be the most biased. However, this
will not necessarily tell us which assumption is violated.

If a model is suspected as being wrong, the comparison between estimates from
single data models and IPM can get us started to identify the problem (our results
and Riecke et al. 2019; Schaub and Kéry in press). Any difference between these
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estimates might indicate model misspecification.When a demographic process adding
individuals to the population is missing, such as immigration, reproductive or/and
survival parameters will be higher compared to the estimates we get from the single
data models. Conversely, when a demographic process removing individuals from
the population is missing, such as breeding probability lower than 1, reproductive and
survival parameterswill be lower compared to the estimates originating from the single
data models. Second, comparing estimates from models using either all or a subset
dataset can also highlight the conflicting parameter(s) (Carvalho et al. 2017). If one
assumption is violated or if there is a conflict between datasets, changing the size of a
dataset should result in different parameter estimates because by reducing the size of
a dataset, we change the weight of each dataset (Fletcher et al. 2019; Schaub and Kéry
in press). If the datasets are too small, another possibility to change the weight of the
datasets is to artificially increase the size of one of them by cloning (Lele et al. 2007).
If the assumptions are met and there is no conflict between datasets, changing the size
of a dataset should not result in different parameter estimates though the uncertainty
would be affected. As an illustration, the scenario including recapture heterogeneity,
estimated recapture probability increased when a subset of the capture-recapture data
was used.

Finally, comparisons of estimates with prior knowledge about the demography of
a species can help to identify misspecified models. If no prior knowledge is available,
knowledge from a related species or even allometric relationships with demographic
rates can be used. A reasonable distrust is healthy. To hypothesize which assumptions
really are violated, profound knowledge of the sampling design and of the species
is required. Once we have a hypothesis about which assumption might be violated,
a targeted GOF test can be performed. GOF tests must be specific to the particular
assumption tested (Gelman et al. 1996; Choquet et al. 2009; Kéry and Schaub 2012;
McCrea et al. 2016; Gimenez et al. 2018). Multiple specific tests should be performed
to test the fit of a general demographic model (Gelman et al. 1996; Kéry and Schaub
2012; Besbeas and Morgan 2014). Besides the tests that we have evaluated, cross-
validation has a large potential to compare the predictions of the population model to
supplemental data, put aside to fit the model (Conn et al. 2018; Hooten and Hobbs
2015). However with long-term datasets, data are often too sparse to be held out.
Moreover, in wild populations, the influence of spatial or temporal heterogeneity on
demographic parameters can be overlooked if some data are left aside.

4.5 Conclusions

As correctly remembered by Conn et al. (2018) the goal of goodness of fit testing is not
to find a perfectly fitting model, but one that does not violate assumptions which result
in systematic errors. Simple models are often useful for many purposes because they
are robust when the amount of data is large enough (Stephens et al. 2002). Nevertheless
it should become a routine to test the fit of IPMs. Multiple comparisons of parameters
estimated with single data models and using reduced or enlarged datasets help to
identify lack of fit and conflicts between datasets.
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For more complex models that allow addressing more specific questions, GOF tests
should be used targeting specific assumptions. Consistency between estimates and
expected knowledge are paramount to assessing model fit—unexpected and strange
values may be a warning signal. Many demographic processes or other mechanisms
may influence survival, reproduction or directly population growth rate in an additive,
multiplicative, linear or non-linear way, and expert knowledge on the population being
studied can set a complex model on the right path.
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