
Normalisr

Lingfei Wang

Nov 03, 2021

CONTENTS:

1 Normalisr 1
1.1 Installation . 1
1.2 Usage . 1
1.3 Documentation . 2
1.4 Examples and pipelines . 2
1.5 Contact . 2
1.6 References . 2
1.7 FAQ . 2

2 User API 5
2.1 Quality control . 5
2.2 Normalization . 5
2.3 Differential expression . 5
2.4 Co-expression . 5
2.5 API list . 6

3 All API 15
3.1 normalisr.association . 15
3.2 normalisr.binnet . 20
3.3 normalisr.coex . 22
3.4 normalisr.de . 22
3.5 normalisr.gocovt . 24
3.6 normalisr.lcpm . 26
3.7 normalisr.norm . 28
3.8 normalisr.parallel . 30
3.9 normalisr.qc . 30

4 Indices and tables 33

Python Module Index 35

Index 37

i

ii

CHAPTER

ONE

NORMALISR

Normalisr is a parameter-free normalization and statistical association testing framework that unifies single-cell dif-
ferential expression, co-expression, and pooled single-cell CRISPR screen analyses with linear models. By systemat-
ically detecting and removing nonlinear confounders arising from library size at mean and variance levels, Normalisr
achieves high sensitivity, specificity, speed, and generalizability across multiple scRNA-seq protocols and experimen-
tal conditions with unbiased p-value estimation.

Normalisr first removes confounding technical noises from raw read counts to recover the biological variations. Then,
linear association testing provides a unified inferential framework with several advantages: (i) exact P-value esti-
mation without permutation, (ii) native removal of covariates (e.g. batches, house-keeping programs, and untested
gRNAs) as fixed effects, (iii) robustness against read count distribution distortions with enough (> 100) cells, and (iv)
computational efficiency.

Normalisr is in python and provides a command-line and a python functional interface. You can read more about
Normalisr from our preprint (See References).

1.1 Installation

Normalisr is on PyPI and can be installed with pip: pip install normalisr. You can also install Normalisr
from github: pip install git+https://github.com/lingfeiwang/normalisr.git. Make sure
you have added Normalisr’s install path into PATH environment before using the command-line interface (See FAQ).
Normalisr’s installation should take less than a minute.

There are more advanced installation methods but if you want that, most likely you already know how to do it. If not,
give me a shout (See Contact).

1.2 Usage

Normalisr provides a command-line and a python functional interface below. You can use the examples provided
below to guide yourself through Normalisr’s use. Sphinx-based documentation is underway.

• Commmand-line interface You can run Normalisr by typing normalisr on command-line. Normalisr uses
submodules for different analysis steps. Type normalisr or normalisr -h for general help, and for
example normalisr de -h for help on submodule ‘de’ of differential expression.

Normalisr uses tsv (tab separated values) file format for input and output matrices, and text file for row and
column names, such as cells and genes, one per line. For initial input, Normalisr also accepts the sparse

1

https://pypi.python.org/pypi/normalisr
https://zenodo.org/badge/latestdoi/242889849
https://pypi.org/project/normalisr

Normalisr

mtx format (Cell Ranger output) for raw read count matrix. Gzipped input/output files are automatically
recognized if file name suffix ‘.gz’ is present.

• Python functional interface Normalisr’s python functional interface is more flexible than command-line, but
requires knowledge of python programming. Documentation of any function can be obtained with ? in
ipython or jupyter notebook, such as:

import normalisr.normalisr as norm
?norm.de

The example jupyter notebooks also illustrate the scope of functions Normalisr provides.

1.3 Documentation

Documentations are available as html and pdf.

1.4 Examples and pipelines

You can find several examples in the ‘examples’ folder, to cover all functions Normalisr currently provides. The
example datasets have been scaled down to run on a 16GB-memory personal computer. Although they only serve as
demonstrations of work here, the pipelines should be transferable to a full-scale, different dataset. Since Normalisr is
non-parametric, the only adjustable parameters are for quality control and final cutoffs of differential or co-expression.
You can change down-sampling parameters in the examples to run the full datasets on a larger computer.

You can find more details in the respective examples.

1.5 Contact

Pease raise an issue on github.

1.6 References

• Normalisr: normalization and association testing for single-cell CRISPR screen and co-expression, Lingfei
Wang, preprint 2021. https://www.biorxiv.org/content/10.1101/2021.04.12.439500v1

1.7 FAQ

• What does Normalisr stand for? Normalisr Offers Robust Modelling of Associations Linearly In Single-cell
RNA-seq. Yes, it’s a recursive acronym. See GNU and pip.

• I installed Normalisr but typing normalisr says ‘command not found’. See below.

• How do I use a specific python version for Normalisr’s command-line interface? You can always use the
python command to run Normalisr, such as python3 -m normalisr to replace command
normalisr. You can also use a specific path or version for python, such as python3.7 -m
normalisr or /usr/bin/python3.7 -m normalisr. Make sure you have installed Normal-
isr for this python version.

2 Chapter 1. Normalisr

https://lingfeiwang.github.io/normalisr/index.html
https://github.com/lingfeiwang/normalisr/raw/master/docs/build/latex/normalisr.pdf
https://github.com/lingfeiwang/normalisr/issues/new
https://www.biorxiv.org/content/10.1101/2021.04.12.439500v1
https://www.gnu.org/gnu/gnu-history.en.html
http://www.ianbicking.org/blog/2008/10/28/pyinstall-is-dead-long-live-pip/index.html

Normalisr

• Why don’t the examples work? Please make sure you followed every step in the README.md of the respec-
tive example folder with Internet connection, and then submit an issue report detailing at which executed
line the error occurred with input and output.

• Does Normalisr run on Windows? I have not tested Normalisr on Windows. However, it is purely in python
and should be able to function properly.

1.7. FAQ 3

Normalisr

4 Chapter 1. Normalisr

CHAPTER

TWO

USER API

2.1 Quality control

qc_reads Quality control by bounding read counts.
qc_outlier Quality control by removing cell outliers by variance.

2.2 Normalization

lcpm Computes Bayesian log CPM from raw read counts.
normcov Normalizes each continuous covariate to 0 mean and

unit variance.
scaling_factor Computes scaling factor of variance normalization for

every gene.
compute_var Computes variance normalization scale for each cell.
normvar Performs mean and variance normalizations.

2.3 Differential expression

de Performs differential expression analyses for all genes
against all groupings.

2.4 Co-expression

coex Performs co-expression analyses for all gene pairs.
binnet Binarizes P-value co-expresion network to thresholded

Q-value network.
gotop Finds the top variable GO enrichment of top principal

genes in the binary co-expression network.
pccovt Introduces an extra covariate from the top principal

component of given genes.

5

Normalisr

2.5 API list

normalisr.normalisr.binnet(net, qcut)
Binarizes P-value co-expresion network to thresholded Q-value network.

Q-values are computed separately per row to account for differences in the number of genes co-expressed, espe-
cially by master regulators, using Benjamini–Hochberg procedure. Co-expression Q-value matrix is thresholded
for return.

Parameters

• net (numpy.ndarray(shape=(n_gene,n_gene),dtype=float)) – Symmet-
ric co-expression P-value matrix.

• qcut (float) – Cutoff for Q-value network.

Returns Binarized, assymmetric co-expression matrix.

Return type numpy.ndarray(shape=(n_gene,n_gene),dtype=bool)

normalisr.normalisr.coex(dt, dc, **ka)
Performs co-expression analyses for all gene pairs.

Performs parallel computation with multiple processes on the same machine.

Model for co-expression between genes i & j: X_i=gamma*X_j+alpha*C+epsilon,

epsilon~i.i.d. N(0,sigma**2).

Test statistic: conditional R**2 (or proportion of variance explained) between X_i and X_j.

Null hypothesis: gamma=0.

Parameters

• dt (numpy.ndarray(shape=(n_gene,n_cell),dtype=float)) – Normal-
ized expression matrix X.

• dc (numpy.ndarray(shape=(n_cov,n_cell),dtype=float)) – Normalized
covariate matrix C.

• ka (dict) – Keyword arguments passed to normalisr.association.association_tests. See
below.

Returns

• P-values (numpy.ndarray(shape=(n_gene,n_gene))) – Co-expression P-value matrix.

• dot (numpy.ndarray(shape=(n_gene,n_gene))) – Inner product of expression between gene
pairs, after removing covariates.

• var (numpy.ndarray(shape=(n_gene))) – Variance of gene expression after removing co-
variates. Pearson R=(((dot/numpy.sqrt(var)).T)/numpy.sqrt(var)).T.

Keyword Arguments

• bs (int) – Batch size, i.e. number of genes in each computing batch. Use 0 for default:
Data transfer limited to 1GB, capped at bs=500.

• nth (int) – Number of parallel processes. Set to 0 for using automatically detected CPU
counts.

• dimreduce (numpy.ndarray(shape=(n_gene,),dtype=int) or int) – If
dt doesn’t have full rank, such as due to prior covariate removal (although the recommended

6 Chapter 2. User API

Normalisr

method is to leave covariates in dc), this parameter allows to specify the loss of ranks/degrees
of freedom to allow for accurate P-value computation. Default is 0, indicating no rank loss.

normalisr.normalisr.compute_var(dt, dc, stepmax=1, eps=1e-06)
Computes variance normalization scale for each cell.

Performs a log-linear fit of the variance of each cell with covariates. Optionally use Expectation-
Maximization(EM)-like method to iteratively fit mean and variance. For EM-like method, early-stopping is
suggested because of overfitting issues.

Parameters

• dt (numpy.ndarray(shape=(n_gene,n_cell))) – Bayesian LogCPM expres-
sion level matrix.

• dc (numpy.ndarray(shape=(n_cov,n_cell))) – Covariate matrix.

• stepmax (int) – Maximum number of EM-like iterations of mean and variance normal-
ization. Stop of iteration is also possible when relative accuracy target is reached. Defaults
to 1, indicating no iterative normalization.

• eps (float) – Relative accuracy target for early stopping. Constrains the maximum rela-
tive difference of fitted variance across cells compared to the last step. Defaults to 1E-6.

Returns Inverse sqrt of fitted variance for each cell, i.e. the multiplier for variance normalization.
For iterative normalization, the optimal step will be returned, defined as having the minimal max
relative change across cells.

Return type numpy.ndarray(shape=(n_cell,))

normalisr.normalisr.de(dg, dt, dc, bs=0, **ka)
Performs differential expression analyses for all genes against all groupings.

Allows multiple options to treat other groupings when testing on one grouping.

Performs parallel computation with multiple processes on the same machine.

Model for differential expression between gene Y and grouping X: Y=gamma*X+alpha*C+epsilon,

epsilon~i.i.d. N(0,sigma**2).

Test statistic: conditional R**2 (or proportion of variance explained) between Y and X.

Null hypothesis: gamma=0.

Parameters

• dg (numpy.ndarray(shape=(n_group,n_cell))) – Grouping matrix for a list of
X to be tested, e.g. grouping by gene knock-out.

• dt (numpy.ndarray(shape=(n_gene,n_cell),dtype=float)) – Normal-
ized expression matrix Y.

• dc (numpy.ndarray(shape=(n_cov,n_cell),dtype=float)) – Normalized
covariate matrix C.

• bs (int) – Batch size, i.e. number of groupings and genes in each computing batch. For
single=0,1, splits groupings & genes. Defaults to 500. For single=4, defaults to splitting
grouping by 10 and not on genes.

• ka (dict) – Keyword arguments passed to normalisr.association.association_test_*. See
below.

Returns

2.5. API list 7

Normalisr

• P-values (numpy.ndarray(shape=(n_group,n_gene))) – Differential expression P-value ma-
trix.

• gamma (numpy.ndarray(shape=(n_group,n_gene))) – Differential expression log fold
change matrix.

• alpha (numpy.ndarray(shape=(n_group,n_gene,n_cov)) or None) – Maximum likelihood
estimators of alpha, separatly tested for each grouping if not lowmem else None.

• varg (numpy.ndarray(shape=(n_group))) – Variance of grouping after removing covariates.

• vart (numpy.ndarray(shape=(n_group,n_gene))) – Variance of gene expression after re-
moving covariates. It can depend on the grouping being tested depending on parameter
single.

Keyword Arguments

• single (int) – Option to deal with other groupings when testing one groupings v.s. gene
expression.

– 0: Ignores other groupings (default).

– 1: Excludes all cells belonging to any other grouping (value==1), assuming dg=0,1 only.
This is suitable for low-MOI CRISPR screens.

– 4: Treats other groupings as covariates for mean expression. This is suitable for
high-MOI CRISPR screens.

• lowmem (bool) – Whether to replace alpha in return value with None to save memory.

• nth (int) – Number of parallel processes. Set to 0 for using automatically detected CPU
counts.

• dimreduce (numpy.ndarray(shape=(n_gene,),dtype=int) or int) – If
dt doesn’t have full rank, such as due to prior covariate removal (although the recommended
method is to leave covariates in dc), this parameter allows to specify the loss of ranks/degrees
of freedom to allow for accurate P-value computation. Default is 0, indicating no rank loss.

• method (str, only for single=4) – Method to compute eigenvalues in SVD-
based matrix inverse (for removal of covariates):

– auto: Uses scipy for n_matrix<mpc or mpc==0 and sklearn otherwise. Default.

– scipy: Uses scipy.linalg.svd.

– scipys: NOT IMPLEMENTED. Uses scipy.sparse.linalg.svds.

– sklearn: Uses sklearn.decomposition.TruncatedSVD.

• mpc (int, only for single=4) – Uses only the top mpc singular values as non-
zero in SVD-based matrix inverse. Here effectively reduces covariates to their top principal
components. This reduction is performed after including other groupings as additional co-
variates. Defaults to 0 to disable dimension reduction. For very large grouping matrix, use
a small value (e.g. 100) to save time at the cost of accuracy.

• qr (int, only for single=4) – Whether to use QR decomposition method for SVD
in matrix inverse. Only effective when method=sklearn, or =auto and defaults to sklearn.
Takes the following values:

– 0: No (default).

– 1: Yes with default settings.

– 2+: Yes with n_iter=qr for sklearn.utils.extmath.randomized_svd.

8 Chapter 2. User API

Normalisr

• tol (float, only for single=4) – Eigenvalues < tol*(maximum eigenvalue) are
treated as zero in SVD-based matrix inverse. Default is 1E-8.

normalisr.normalisr.gotop(net, namet, go_file, goa_file, n=100, **ka)
Finds the top variable GO enrichment of top principal genes in the binary co-expression network.

Principal genes are those with most co-expressed genes. They reflect the most variable pathways in the dataset.
When the variable pathways are housekeeping related, they may conceal cell-type-specific co-expression pat-
terns from being observed and understood. This function identifies the most variable pathway with gene ontol-
ogy enrichment study of the top principal genes. Background genes are all genes provided.

Parameters

• net (numpy.ndarray(shape=(n_gene,n_gene),dtype=bool)) – Binary co-
expression network matrix.

• namet (list of str) – Gene names matching the rows and columns of net.

• go_file (str) – File path for GO DAG (downloadable at http://geneontology.org/docs/
download-ontology/)).

• goa_file (str) – File path of GO annotation. See parameter conversion in normal-
isr.gocovt.goe.

• n (int) – Number of top principal genes to include for GO enrichment. Default is 100,
giving good performance in general.

• ka (dict) – IMPORTANT: Keyword arguments passed to normalisr.gocovt.goe to deter-
mine how to perform GO enrichment study. If you see no gene mapped, check your gene
name conversion rule in conversion parameter of normalisr.gocovt.goe. GO annotation have
a specific gene ID system.

Returns

• principals (list of str) – List of principal genes.

• goe (pandas.DataFrame) – GO enrichment results.

• gotop (str) – Top enriched GO ID.

• genes (list of str) – List of genes in the gotop GO ID.

normalisr.normalisr.lcpm(reads, normalize=True, nth=0, ntot=None, varscale=0, seed=None,
lowmem=True, nocov=False)

Computes Bayesian log CPM from raw read counts.

The technical sampling process is modelled as a Binomial distribution. The logCPM given read counts is a
Bayesian inference problem and follows (shifted) Beta distribution. We use the expectation of posterior logCPM
as the estimated expression levels. Resampling function is also provided to account for variances in the posterior
distribution.

Warning: Modifying keyword arguments other than nth or seed is neither recommended nor supported for
function ‘lcpm’. Do so at your own risk.

Parameters

• reads (numpy.ndarray(shape=(n_gene,n_cell),dtype='uint')) – Read
count matrix.

• normalize (bool) – Whether to normalize output to logCPM per cell. Default: True.

• nth (int) – Number of threads to use. Defaults to 0 to use all cores automatically detected.

2.5. API list 9

http://geneontology.org/docs/download-ontology/
http://geneontology.org/docs/download-ontology/

Normalisr

• ntot (int) – Manually sets value of total number of reads in binomial distribution. Since
the posterior distribution stablizes quickly as ntot increases, a large number, e.g. 1E9 is
good for general use. Defaults to None to disable manual value.

• varscale (float) – Resamples estimated expression using the posterior Beta distribu-
tion. varscale sets the scale of variance than its actual value from the posterior distribution.
Defaults to 0, to compute expectation with no variance.

• seed (int) – Initial random seed if set.

• lowmem (bool) – Low memory mode disable mean and var in Returns and therefore saves
memory.

• nocov (bool) – Whether to skip producing covariate variables. If True, output cov=None

Returns

• lcpm (numpy.ndarray(shape=(n_gene,n_cell))) – Estimated expression as logCPM from
read counts.

• mean (numpy.ndarray(shape=(n_gene,n_cell)) or None) – Mean/Expectation of lcpm’s ev-
ery entry’s posterior distribution. None if lowmem=True.

• var (numpy.ndarray(shape=(n_gene,n_cell)) or None) – Variance of lcpm’s every entry’s
posterior distribution. None if lowmem=True.

• cov (numpy.ndarray(shape=(3,n_cell))) – Cellular summary covariates computed from read
count matrix that may confound lcpm. Contains:

– cov[0]: Log total read count per cell

– cov[1]: Number of 0-read genes per cell

– cov[2]: cov[0]**2

normalisr.normalisr.normcov(dc, c=True)
Normalizes each continuous covariate to 0 mean and unit variance.

Optionally introduces constant 1 covariate as intercept. Categorical covariates should be in binary/one-hot form,
and will be left unchanged.

Parameters

• dc (numpy.ndarray(shape=(n_cov,n_cell))) – Current covariate matrix. Use
empty matrix with n_cov=0 if no covariate.

• c (bool) – Whether to introduce a constant 1 covariate.

Returns Processed covariate matrix.

Return type numpy.ndarray(shape=(n_cov+1 if c else n_cov,n_cell))

normalisr.normalisr.normvar(dt, dc, w, wt, dextra=None, cat=1, nth=1, bs=500, keepvar=True,
normmean=False)

Performs mean and variance normalizations.

Expression levels are normalized at mean and then at variance levels. Effectively each gene x is multiplied
by w**wt[x] before removing covariates as dc*(w**wt[x]). Continuous covariates are normalized at variance
levels. Effectively covariates are transformed to dc*w. Therefore, variance normalization for expression are
scaled differently for each gene.

Parameters

• dt (numpy.ndarray(shape=(n_gene,n_cell))) – Bayesian logCPM matrix.

• dc (numpy.ndarray(shape=(n_cov,n_cell))) – Covariate matrix.

10 Chapter 2. User API

Normalisr

• w (numpy.ndarray(shape=(n_cell,))) – Computed variance normalization mul-
tiplier.

• wt (numpy.ndarray(shape=(n_gene,))) – Computed scaling factor for each gene.

• dextra (numpy.ndarray(shape=(n_extra,n_cell))) – Extra data matrix also
to be normalized like continuous covariates.

• cat (int) – Whether to normalize categorical/binary covariates (those with only 0 or 1s).
Defaults to 1.

– 0: No

– 1: No except constant-1 covariate (intercept)

– 2: Yes

• nth (int) – Number of parallel threads.

• bs (int) – Batch size for each job.

• keepvar (bool) – Whether to maintain the variance of each gene invariant in mean nor-
malization step. If so, expression variances are scaled back to original after mean normal-
ization and before variance normalization. This function only affects overall variance level
and its downstreams (e.g. differential expression log fold change). This function would not
affect P-value computation. Default: True.

• normmean (bool) – Whether to remove covariates from expression at mean level. This
is accounted for in hypothesis testing with linear models so this option makes no difference
here. However, this can be helpful for other purposes of analyses.

Returns

• (dtn,dcn) or (dtn,dcn,dextran) if dextra is not None

• dtn (numpy.ndarray(shape=(n_gene,n_cell))) – Normalized gene expression matrix.

• dcn (numpy.ndarray(shape=(n_cov,n_cell))) – Normalized covariate matrix.

• dextran (numpy.ndarray(shape=(n_extra,n_cell))) – Normalized extra data matrix.

normalisr.normalisr.pccovt(dt, dc, namet, genes, condcov=True)
Introduces an extra covariate from the top principal component of given genes.

The extra covariate is the top principal component of normalized expressions of the selected genes. Adding a
covariate from housekeeping pathway can reveal cell-type-specific activities in co-expression networks.

Parameters

• dt (numpy.ndarray(shape=(n_gene,n_cell))) – Normalized expression ma-
trix.

• dc (numpy.ndarray(shape=(n_cov,n_cell))) – Existing normalized covariate
matrix.

• namet (list of str) – List of gene names for rows in dt.

• genes (list of str) – List of gene names to include in finding top PC of their expres-
sion as an extra covariate.

• condcov (bool) – Whether to condition on existing covariates before computing top PC.
Default: True.

Returns New normalized covariate matrix.

Return type numpy.ndarray(shape=(n_cov+1,n_cell))

2.5. API list 11

Normalisr

normalisr.normalisr.qc_outlier(dw, pcut=1e-10, outrate=0.02)
Quality control by removing cell outliers by variance.

Fit normal distribution on the inverse sqrt variance to detect outliers. This is performed by iterative estimation
of normal distribution with non-outliers and then determination of outliers with the normal distribution.

Parameters

• dw (numpy.ndarray(shape=(n_cell,))) – Fitted inverse sqrt cell variance.

• pcut (float) – Bonferroni P-value cutoff for asserting outliers in a normal distribution of
fitted cell variance. Default: 1E-10.

• outrate (float) – Upper bound of proportion of outliers on either side of variance
distribution. Used for initial outlier assignment and final validity check. Default: 0.02.

Returns Whether each cell passed QC

Return type numpy.ndarray(shape=(n_cell,),dtype=bool)

normalisr.normalisr.qc_reads(reads, n_gene, nc_gene, ncp_gene, n_cell, nt_cell, ntp_cell)
Quality control by bounding read counts.

Quality control is perform separately on genes based on their cell statisics and on cells based on their gene
statistics, iteratively until dataset remains unchanged. A gene or cell is removed if any of the QC criteria is
violated at any time in the iteration. All QC parameters can be set to 0 to disable QC filtering for that criterion.

Parameters

• reads (numpy.ndarray((n_gene,n_cell),dtype='uint')) – Read count
matrix.

• n_gene (int) – Lower bound on total read counts for gene QC.

• nc_gene (int) – Lower bound on number of expressed cells for gene QC.

• ncp_gene (float) – Lower bound on proportion of expressed cells for gene QC.

• n_cell (int) – Lower bound on total read counts for cell QC.

• nt_cell (int) – Lower bound on number of expressed genes for cell QC.

• ntp_cell (float) – Lower bound on proportion of expressed genes for cell QC.

Returns

• genes_select (numpy.ndarray(dtype=’uint’)) – Array of indices of genes passed QC.

• cells_select (numpy.ndarray(dtype=’uint’)) – Array of indices of cells passed QC.

normalisr.normalisr.scaling_factor(dt, varname='nt0mean', v0=0, v1='max')
Computes scaling factor of variance normalization for every gene.

Lowly expressed genes need full variance normalization because of technical confounding from sequencing
depth. Highly expressed genes do not need variance normalization because they are already accurately mea-
sured. The scaling factor operates as a exponential factor on the variance normalization scale for each gene. It
should be maximum/minimum for genes with lowest/highest expression.

Warning: Modifying keyword arguments is neither recommended nor supported for function ‘scaling_factor’.
Do so at your own risk.

Parameters

• dt (numpy.ndarray(shape=(n_gene,n_cell),dtype='uint')) – Read
count matrix.

• varname (str) – Variable used to compute scaling factor for each gene. Can be:

12 Chapter 2. User API

Normalisr

– logtpropmean: log(dt.mean(axis=1)/dt.mean(axis=1).sum())

– logtmeanprop: log((dt/dt.sum(axis=0)).mean(axis=1))

– nt0mean: (dt==0).mean(axis=1)

– lognt0mean: log((dt==0).mean(axis=1))

– log1-nt0mean: log(1-(dt==0).mean(axis=1))

Defaults to nt0mean.

• v0 (float) – Variable values to set scaling factor to 0 (for v0) and 1 (for v1). Linear
assignment is applied for values inbetween. Can be:

– max: max

– min: min

– any float: that float

• v1 (float) – Variable values to set scaling factor to 0 (for v0) and 1 (for v1). Linear
assignment is applied for values inbetween. Can be:

– max: max

– min: min

– any float: that float

Returns Scaling factor of variance normalization for each gene

Return type numpy.ndarray(shape=(n_gene,))

2.5. API list 13

Normalisr

14 Chapter 2. User API

CHAPTER

THREE

ALL API

3.1 normalisr.association

normalisr.association.association_test_1(vx, vy, dx, dy, dc, dci, dcr, dimreduce=0,
lowmem=False)

Fast linear association testing in single-cell non-cohort settings with covariates.

Single threaded version to allow for parallel computing wrapper. Mainly used for naive differential expression and co-expression. Computes exact P-value and effect size (gamma) with the model for linear association testing between each vector x and vector y:
y=gamma*x+alpha*C+epsilon,

epsilon~i.i.d. N(0,sigma**2).

Test statistic: conditional R**2 (or proportion of variance explained) between x and y.

Null hypothesis: gamma=0.

Parameters

• vx (any) – Starting indices of dx. Only used for information passing.

• vy (any) – Starting indices of dy. Only used for information passing.

• dx (numpy.ndarray(shape=(n_x,n_cell))) – Predictor matrix for a list of vector
x to be tested, e.g. gene expression or grouping.

• dy (numpy.ndarray(shape=(n_y,n_cell))) – Target matrix for a list of vector y
to be tested, e.g. gene expression.

• dc (numpy.ndarray(shape=(n_cov,n_cell))) – Covariate matrix as C.

• dci (numpy.ndarray(shape=(n_cov,n_cov))) – Low-rank inverse matrix of
dc*dc.T.

• dcr (int) – Rank of dci.

• dimreduce (numpy.ndarray(shape=(ny,),dtype='uint') or int.) – If
each vector y doesn’t have full rank in the first place, this parameter is the loss of degree of
freedom to allow for accurate P-value computation.

• lowmem (bool) – Whether to save memory by neither computing nor returning alpha.

Returns

• vx (any) – vx from input for information passing.

• vy (any) – vy from input for information passing.

• pv (numpy.ndarray(shape=(n_x,n_y))) – P-values of association testing (gamma==0).

• gamma (numpy.ndarray(shape=(n_x,n_y))) – Maximum likelihood estimator of gamma in
model.

15

Normalisr

• alpha (numpy.ndarray(shape=(n_x,n_y,n_cov)) or None) – Maximum likelihood estimator
of alpha in model if not lowmem else None.

• var_x (numpy.ndarray(shape=(n_x,))) – Variance of dx unexplained by covariates C.

• var_y (numpy.ndarray(shape=(n_y,))) – Variance of dy unexplained by covariates C.

normalisr.association.association_test_2(vx, vy, dx, dy, dc, sselectx, dimreduce=0,
lowmem=False)

Like association_test_1, but takes a different subset of samples for each x.

See association_test_1 for additional details.

Parameters

• vx (any) – Starting indices of dx. Only used for information passing.

• vy (any) – Starting indices of dy. Only used for information passing.

• dx (numpy.ndarray(shape=(n_x,n_cell))) – Predictor matrix for a list of vector
x to be tested, e.g. gene expression or grouping.

• dy (numpy.ndarray(shape=(n_y,n_cell))) – Target matrix for a list of vector y
to be tested, e.g. gene expression.

• dc (numpy.ndarray(shape=(n_cov,n_cell))) – Covariate matrix as C.

• sselectx (numpy.ndarray(shape=(n_x,n_cell),dtype=bool)) – Subset
of samples to use for each x.

• dimreduce (numpy.ndarray(shape=(ny,),dtype='uint') or int.) – If
each vector y doesn’t have full rank in the first place, this parameter is the loss of degree of
freedom to allow for accurate P-value computation.

• lowmem (bool) – Whether to save memory by neither computing nor returning alpha.

Returns

• vx (any) – vx from input for information passing.

• vy (any) – vy from input for information passing.

• pv (numpy.ndarray(shape=(n_x,n_y))) – P-values of association testing (gamma==0).

• gamma (numpy.ndarray(shape=(n_x,n_y))) – Maximum likelihood estimator of gamma in
model.

• alpha (numpy.ndarray(shape=(n_x,n_y,n_cov)) or None) – Maximum likelihood estimator
of alpha in model if not lowmem else None.

• var_x (numpy.ndarray(shape=(n_x,))) – Variance of dx unexplained by covariates C.

• var_y (numpy.ndarray(shape=(n_x,n_y))) – Variance of dy unexplained by covariates C.

normalisr.association.association_test_4(vx, vy, prod, prody, prodyy, na, dimreduce=0,
lowmem=False, **ka)

Like association_test_1, but regards all other (untested) x’s as covariates when testing each x. Also allows for
dx==dy setting, where neither tested x or y is regarded as a covariate.

See association_test_1 for additional details. Other x’s are treated as covariates but their coefficients (alpha)
would not be returned to reduce memory footprint.

Parameters

• vx (any) – Starting indices of dx.

• vy (any) – Starting indices of dy. Only used for information passing.

16 Chapter 3. All API

Normalisr

• prod (numpy.ndarray(shape=(n_x+n_cov,n_x+n_cov))) – A@A.T, where
A=numpy.block([dx,dc]).

• prody (numpy.ndarray(shape=(n_x+n_cov,n_y)) or None) – A@dy.T,
where A=numpy.block([dx,dc]). If None, indicating dx==dy and skipping tested y as a
covariate.

• prodyy (numpy.ndarray(shape=(n_y,)) or None) – (dy**2).sum(axis=1). If
None, indicating dx==dy and skipping tested y as a covariate.

• na (tuple) – (n_x,n_y,n_cov,n_cell,lenx). Numbers of (x’s, y’s, covariates, cells, x’s to
compute association for)

• dimreduce (numpy.ndarray(shape=(ny,),dtype='uint') or int.) – If
each vector y doesn’t have full rank in the first place, this parameter is the loss of degree of
freedom to allow for accurate P-value computation.

• lowmem (bool) – Whether to save memory by neither computing nor returning alpha.

• ka (dict) – Keyword arguments passed to inv_rank.

Returns

• vx (any) – vx from input for information passing.

• vy (any) – vy from input for information passing.

• pv (numpy.ndarray(shape=(n_x,n_y))) – P-values of association testing (gamma==0).

• gamma (numpy.ndarray(shape=(n_x,n_y))) – Maximum likelihood estimator of gamma in
model.

• alpha (numpy.ndarray(shape=(n_x,n_y,n_cov)) or None) – Maximum likelihood estimator
of alpha in model if not lowmem else None.

• var_x (numpy.ndarray(shape=(lenx,)) or None) – Variance of dx unexplained by covariates
C if prody is not None else None.

• var_y (numpy.ndarray(shape=(lenx,n_y))) – Variance of dy unexplained by covariates C or
untested x.

normalisr.association.association_test_5(vx, vy, prod, prody, prodyy, na, mask, dimre-
duce=0, lowmem=False, **ka)

Like association_test_4, but uses mask to determine which X can affect which Y. Under development.

Parameters

• vx (any) – Starting indices of dx.

• vy (any) – Starting indices of dy. Only used for information passing.

• prod (numpy.ndarray(shape=(n_x+n_cov,n_x+n_cov))) – A@A.T, where
A=numpy.block([dx,dc]).

• prody (numpy.ndarray(shape=(n_x+n_cov,n_y)) or None) – A@dy.T,
where A=numpy.block([dx,dc]). If None, indicating dx==dy and skipping tested y as a
covariate.

• prodyy (numpy.ndarray(shape=(n_y,)) or None) – (dy**2).sum(axis=1). If
None, indicating dx==dy and skipping tested y as a covariate.

• na (tuple) – (n_x,n_y,n_cov,n_cell,lenx). Numbers of (x’s, y’s, covariates, cells, x’s to
compute association for)

• mask (numpy.ndarray(shape=(n_x,n_y),dtype=bool)) – Whether each X
can affect each Y.

3.1. normalisr.association 17

Normalisr

• dimreduce (numpy.ndarray(shape=(ny,),dtype='uint') or int.) – If
each vector y doesn’t have full rank in the first place, this parameter is the loss of degree of
freedom to allow for accurate P-value computation.

• lowmem (bool) – Whether to save memory by neither computing nor returning alpha.

• ka (dict) – Keyword arguments passed to inv_rank.

Returns

• vx (any) – vx from input for information passing.

• vy (any) – vy from input for information passing.

• pv (numpy.ndarray(shape=(n_x,n_y))) – P-values of association testing (gamma==0).

• gamma (numpy.ndarray(shape=(n_x,n_y))) – Maximum likelihood estimator of gamma in
model.

• alpha (numpy.ndarray(shape=(n_x,n_y,n_cov)) or None) – Maximum likelihood estimator
of alpha in model if not lowmem else None.

• var_x (numpy.ndarray(shape=(lenx,n_y))) – Variance of dx unexplained by covariates C or
untested x.

• var_y (numpy.ndarray(shape=(lenx,n_y))) – Variance of dy unexplained by covariates C or
untested x.

normalisr.association.association_tests(dx, dy, dc, bsx=0, bsy=0, nth=1, lowmem=True,
return_dot=True, single=0, bs4=500, **ka)

Performs association tests between all pairs of two (or one) variables. Performs parallel computation with
multiple processes on the same machine.

Allows multiple options to treat other/untested dx when testing on one (see parameter single).

Performs parallel computation with multiple processes on the same machine.

Model for differential expression between X and Y: Y=gamma*X+alpha*C+epsilon,

epsilon~i.i.d. N(0,sigma**2).

Test statistic: conditional R**2 (or proportion of variance explained) between Y and X.

Null hypothesis: gamma=0.

Parameters

• dx (numpy.ndarray(shape=(n_x,n_cell))) – Normalized matrix X.

• dy (numpy.ndarray(shape=(n_y,n_cell),dtype=float) or None) –
Normalized matrix Y. If None, indicates dy=dx, i.e. self-association between pairs within
X.

• dc (numpy.ndarray(shape=(n_cov,n_cell),dtype=float)) – Normalized
covariate matrix C.

• bsx (int) – Batch size, i.e. number of Xs in each computing batch. Defaults to 500.

• bsy (int) – Batch size, i.e. number of Xs in each computing batch. Defaults to 500.
Ignored if dy is None.

• nth (int) – Number of parallel processes. Set to 0 for using automatically detected CPU
counts.

• lowmem (bool) – Whether to replace alpha in return value with None to save memory

18 Chapter 3. All API

Normalisr

• return_dot (bool) – Whether to return dot product betwen dx and dy instead of coeffi-
cient gamma

• single (int) – Type of association test to perform that determines which cells and co-
variates are used for each association test between X and Y. Accepts the following values:

– 0: Simple pairwise association test between each X and Y across all cells.

– 1: Association test for each X uses only cells that have all zeros in dx for all other Xs. A
typical application is low-MOI CRISPR screen.

– 4: Association test for each X uses all cells but regarding all other Xs as covariates that
confound mean expression levels. This is suitable for high-MOI CRISPR screen.

– 5: Similar with 4 but uses mask to determine which X can affect which Y. Under devel-
opment.

• bs4 (int) – Batch size for matrix product when single=4. Defaults to 500.

• ka (dict) – Keyword arguments passed to normalisr.association.association_test_X. See
below.

Returns

• P-values (numpy.ndarray(shape=(n_x,n_y))) – Differential expression P-value matrix.

• dot/gamma (numpy.ndarray(shape=(n_x,n_y))) – If return_dot, inner product between X
and Y pairs after removing covariates. Otherwise, matrix gamma.

• alpha (numpy.ndarray(shape=(n_x,n_y,n_cov)) or None) – Maximum likelihood estimators
of alpha, separatly tested for each grouping if not lowmem else None.

• varx (numpy.ndarray(shape=(n_x)) or numpy.ndarray(shape=(n_x,n_y)) or None) – Vari-
ance of grouping after removing covariates if dy is not None and single!=5 else None

• vary (numpy.ndarray(shape=(n_y)) if single==0 else numpy.ndarray(shape=(n_x,n_y))) –
Variance of gene expression after removing covariates. Its shape depends on parameter
single.

Keyword Arguments

• dimreduce (numpy.ndarray(shape=(n_y,),dtype=int) or int) – If dy
doesn’t have full rank, such as due to prior covariate removal (although the recommended
method is to leave covariates in dc), this parameter allows to specify the loss of ranks/degrees
of freedom to allow for accurate P-value computation. Default is 0, indicating no rank loss.

• mask (numpy.ndarray(shape=(n_x,n_y),dtype=bool)) – Whether each X
can affect each Y. Only active for single==5.

normalisr.association.inv_rank(m, tol=1e-08, method='auto', logger=None, mpc=0, qr=0,
**ka)

Computes matrix (pseudo-)inverse and rank with SVD.

Eigenvalues smaller than tol*largest eigenvalue are set to 0. Rank of inverted matrix is also returned. Provides
to limit the number of eigenvalues to speed up computation. Broadcasts to the last 2 dimensions of the matrix.

Parameters

• m (numpy.ndarray(shape=(..,n,n),dtype=float)) – 2-D or higher matrix to
be inverted

• tol (float) – Eigenvalues < tol*maximum eigenvalue are treated as zero.

• method (str) – Method to compute eigenvalues:

– auto: Uses scipy for n<mpc or mpc==0 and sklearn otherwise

3.1. normalisr.association 19

Normalisr

– scipy: Uses scipy.linalg.svd

– scipys: NOT IMPLEMENTED. Uses scipy.sparse.linalg.svds

– sklearn: Uses sklearn.decomposition.TruncatedSVD

• logger (object) – Logger to output warning. Defaults (None) to logging module

• mpc (int) – Maximum rank or number of eigenvalues/eigenvectors to consider. Defaults
to 0 to disable limit. For very large input matrix, use a small value (e.g. 500) to save time at
the cost of accuracy.

• qr (int) – Whether to use QR decomposition for matrix inverse. Only effective when
method=sklearn, or =auto that defaults to sklearn. * 0: No * 1: Yes with default settings *
2+: Yes with n_iter=qr for sklearn.utils.extmath.randomized_svd

• ka (Keyword args passed to method) –

Returns

• mi (numpy.ndarray(shape=(. . . ,n,n),dtype=float)) – Pseudo-inverse matrices

• r (numpy.ndarray(shape=(. . .),dtype=int) or int) – Matrix ranks

normalisr.association.prod1(vx, vy, dx, dy)
Pickleable function for matrix product that keeps information

Parameters

• vx (any) – Information passed

• vy (any) – Information passed

• dx (numpy.ndarray(shape=(..,n))) – Matrix for multiplication

• dy (numpy.ndarray(shape=(..,n))) – Matrix for multiplication

Returns

• vx (any) – vx

• vy (any) – vy

• product (numpy.ndarray(shape=(. . .))) – dx@dy.T

3.2 normalisr.binnet

normalisr.binnet.bh(pv, weight=None)
Converts P-values to Q-values using Benjamini–Hochberg procedure.

Parameters

• pv (numpy.ndarray(shape=(n,))) – P-values.

• weight (numpy.ndarray(shape=(n,)) or None) – Weight of each P-value. De-
faults (None) to equal.

Returns Q-values.

Return type numpy.ndarray(shape=(n,))

20 Chapter 3. All API

Normalisr

References

Controlling the false discovery rate: a practical and powerful approach to multiple testing, Benjamini and
Hochberg. 1995

normalisr.binnet.binnet(net, qcut)
Binarizes P-value co-expresion network to thresholded Q-value network.

Q-values are computed separately per row to account for differences in the number of genes co-expressed, espe-
cially by master regulators, using Benjamini–Hochberg procedure. Co-expression Q-value matrix is thresholded
for return.

Parameters

• net (numpy.ndarray(shape=(n_gene,n_gene),dtype=float)) – Symmet-
ric co-expression P-value matrix.

• qcut (float) – Cutoff for Q-value network.

Returns Binarized, assymmetric co-expression matrix.

Return type numpy.ndarray(shape=(n_gene,n_gene),dtype=bool)

normalisr.binnet.nodiag(d, split=False)
Removes diagonals from 2D matrix.

Parameters

• d (numpy.ndarray(shape=[n1,n2])) – Input matrix

• split (bool) – Whether to output list of 1D arrays for each row instead of a single con-
catenated 1D array.

Returns

• If split (List of numpy.ndarray(shape=[n2 or n2-1]) for each row.)

• Else (numpy.ndarray(shape=(n1*n2-min(n1,n2),))) – Reduced 1D array

normalisr.binnet.rediag(d, fill=0, shape=None)
Converts a ‘nodiag’ed vector back to matrix of original shape.

Parameters

• d (numpy.ndarray(shape=(n,))) – Output array from nodiag(split=False)

• fill (any) – Values to fill in the diagonal entries

• shape (tuple or None) – Shape of original matrix. If omitted (None), assume original
is a square matrix.

Returns Recovered original matrix.

Return type numpy.ndarray(shape=shape)

3.2. normalisr.binnet 21

Normalisr

3.3 normalisr.coex

normalisr.coex.coex(dt, dc, **ka)
Performs co-expression analyses for all gene pairs.

Performs parallel computation with multiple processes on the same machine.

Model for co-expression between genes i & j: X_i=gamma*X_j+alpha*C+epsilon,

epsilon~i.i.d. N(0,sigma**2).

Test statistic: conditional R**2 (or proportion of variance explained) between X_i and X_j.

Null hypothesis: gamma=0.

Parameters

• dt (numpy.ndarray(shape=(n_gene,n_cell),dtype=float)) – Normal-
ized expression matrix X.

• dc (numpy.ndarray(shape=(n_cov,n_cell),dtype=float)) – Normalized
covariate matrix C.

• ka (dict) – Keyword arguments passed to normalisr.association.association_tests. See
below.

Returns

• P-values (numpy.ndarray(shape=(n_gene,n_gene))) – Co-expression P-value matrix.

• dot (numpy.ndarray(shape=(n_gene,n_gene))) – Inner product of expression between gene
pairs, after removing covariates.

• var (numpy.ndarray(shape=(n_gene))) – Variance of gene expression after removing co-
variates. Pearson R=(((dot/numpy.sqrt(var)).T)/numpy.sqrt(var)).T.

Keyword Arguments

• bs (int) – Batch size, i.e. number of genes in each computing batch. Use 0 for default:
Data transfer limited to 1GB, capped at bs=500.

• nth (int) – Number of parallel processes. Set to 0 for using automatically detected CPU
counts.

• dimreduce (numpy.ndarray(shape=(n_gene,),dtype=int) or int) – If
dt doesn’t have full rank, such as due to prior covariate removal (although the recommended
method is to leave covariates in dc), this parameter allows to specify the loss of ranks/degrees
of freedom to allow for accurate P-value computation. Default is 0, indicating no rank loss.

3.4 normalisr.de

normalisr.de.de(dg, dt, dc, bs=0, **ka)
Performs differential expression analyses for all genes against all groupings.

Allows multiple options to treat other groupings when testing on one grouping.

Performs parallel computation with multiple processes on the same machine.

Model for differential expression between gene Y and grouping X: Y=gamma*X+alpha*C+epsilon,

epsilon~i.i.d. N(0,sigma**2).

22 Chapter 3. All API

Normalisr

Test statistic: conditional R**2 (or proportion of variance explained) between Y and X.

Null hypothesis: gamma=0.

Parameters

• dg (numpy.ndarray(shape=(n_group,n_cell))) – Grouping matrix for a list of
X to be tested, e.g. grouping by gene knock-out.

• dt (numpy.ndarray(shape=(n_gene,n_cell),dtype=float)) – Normal-
ized expression matrix Y.

• dc (numpy.ndarray(shape=(n_cov,n_cell),dtype=float)) – Normalized
covariate matrix C.

• bs (int) – Batch size, i.e. number of groupings and genes in each computing batch. For
single=0,1, splits groupings & genes. Defaults to 500. For single=4, defaults to splitting
grouping by 10 and not on genes.

• ka (dict) – Keyword arguments passed to normalisr.association.association_test_*. See
below.

Returns

• P-values (numpy.ndarray(shape=(n_group,n_gene))) – Differential expression P-value ma-
trix.

• gamma (numpy.ndarray(shape=(n_group,n_gene))) – Differential expression log fold
change matrix.

• alpha (numpy.ndarray(shape=(n_group,n_gene,n_cov)) or None) – Maximum likelihood
estimators of alpha, separatly tested for each grouping if not lowmem else None.

• varg (numpy.ndarray(shape=(n_group))) – Variance of grouping after removing covariates.

• vart (numpy.ndarray(shape=(n_group,n_gene))) – Variance of gene expression after re-
moving covariates. It can depend on the grouping being tested depending on parameter
single.

Keyword Arguments

• single (int) – Option to deal with other groupings when testing one groupings v.s. gene
expression.

– 0: Ignores other groupings (default).

– 1: Excludes all cells belonging to any other grouping (value==1), assuming dg=0,1 only.
This is suitable for low-MOI CRISPR screens.

– 4: Treats other groupings as covariates for mean expression. This is suitable for
high-MOI CRISPR screens.

• lowmem (bool) – Whether to replace alpha in return value with None to save memory.

• nth (int) – Number of parallel processes. Set to 0 for using automatically detected CPU
counts.

• dimreduce (numpy.ndarray(shape=(n_gene,),dtype=int) or int) – If
dt doesn’t have full rank, such as due to prior covariate removal (although the recommended
method is to leave covariates in dc), this parameter allows to specify the loss of ranks/degrees
of freedom to allow for accurate P-value computation. Default is 0, indicating no rank loss.

• method (str, only for single=4) – Method to compute eigenvalues in SVD-
based matrix inverse (for removal of covariates):

3.4. normalisr.de 23

Normalisr

– auto: Uses scipy for n_matrix<mpc or mpc==0 and sklearn otherwise. Default.

– scipy: Uses scipy.linalg.svd.

– scipys: NOT IMPLEMENTED. Uses scipy.sparse.linalg.svds.

– sklearn: Uses sklearn.decomposition.TruncatedSVD.

• mpc (int, only for single=4) – Uses only the top mpc singular values as non-
zero in SVD-based matrix inverse. Here effectively reduces covariates to their top principal
components. This reduction is performed after including other groupings as additional co-
variates. Defaults to 0 to disable dimension reduction. For very large grouping matrix, use
a small value (e.g. 100) to save time at the cost of accuracy.

• qr (int, only for single=4) – Whether to use QR decomposition method for SVD
in matrix inverse. Only effective when method=sklearn, or =auto and defaults to sklearn.
Takes the following values:

– 0: No (default).

– 1: Yes with default settings.

– 2+: Yes with n_iter=qr for sklearn.utils.extmath.randomized_svd.

• tol (float, only for single=4) – Eigenvalues < tol*(maximum eigenvalue) are
treated as zero in SVD-based matrix inverse. Default is 1E-8.

3.5 normalisr.gocovt

normalisr.gocovt.goe(genelist, go_file, goa_file, bg=None, nmin=5, conversion=None, evi-
dence_set={'EXP', 'HDA', 'HGI', 'HMP', 'HTP', 'IBA', 'IBD', 'IDA', 'IGI', 'IKR',
'IMP', 'IPI', 'IRD', 'ISA', 'ISM', 'ISO', 'ISS'})

Finds GO enrichment with goatools (0.7.11 tested).

WARNING: This method is inexact for multi-maps in gene name conversion. However, it has a negligible effect
in top GO component removal in single-cell co-expression.

Parameters

• genelist (list of str) – Genes to search for enrichment.

• go_file (str) – File path for GO DAG (downloadable at http://geneontology.org/docs/
download-ontology/)).

• goa_file (str) – File path for GO associations. See parameter conversion.

• bg (list of str) – Background genes.

• nmin (int) – Minimum number of principal genes required in GO.

• conversion (tuple) – Conversion of gene ID system from gene list to the GO annota-
tion.

– name_from: Gene naming system of genelist. For gene names, use ‘symbol,alias’.

– name_to: Gene naming system of goa_file. Examples:

* Human: use ‘uniprot.Swiss-Prot’ (for GO annotations downloded from http://
geneontology.org/gene-associations/goa_human.gaf.gz).

* Mouse: use ‘MGI’ (for GO annotations downloded from http://current.geneontology.
org/annotations/mgi.gaf.gz).

24 Chapter 3. All API

http://geneontology.org/docs/download-ontology/
http://geneontology.org/docs/download-ontology/
https://docs.mygene.info/en/latest/doc/data.html
http://geneontology.org/gene-associations/goa_human.gaf.gz
http://geneontology.org/gene-associations/goa_human.gaf.gz
http://current.geneontology.org/annotations/mgi.gaf.gz
http://current.geneontology.org/annotations/mgi.gaf.gz

Normalisr

– species: Species for gene name conversion. Examples: ‘human’, ‘mouse’.

• evidence_set (set of str) – GO evidences to include. Defaults to non-expression
based results to avoid circular reasoning bias.

Returns

• goe (pandas.DataFrame) – GO enrichment.

• gotop (str) – Top enriched GO ID

• genes (list of str or None) – Intersection list of genes in gotop and also bg. None if bg is
None.

normalisr.gocovt.gotop(net, namet, go_file, goa_file, n=100, **ka)
Finds the top variable GO enrichment of top principal genes in the binary co-expression network.

Principal genes are those with most co-expressed genes. They reflect the most variable pathways in the dataset.
When the variable pathways are housekeeping related, they may conceal cell-type-specific co-expression pat-
terns from being observed and understood. This function identifies the most variable pathway with gene ontol-
ogy enrichment study of the top principal genes. Background genes are all genes provided.

Parameters

• net (numpy.ndarray(shape=(n_gene,n_gene),dtype=bool)) – Binary co-
expression network matrix.

• namet (list of str) – Gene names matching the rows and columns of net.

• go_file (str) – File path for GO DAG (downloadable at http://geneontology.org/docs/
download-ontology/)).

• goa_file (str) – File path of GO annotation. See parameter conversion in normal-
isr.gocovt.goe.

• n (int) – Number of top principal genes to include for GO enrichment. Default is 100,
giving good performance in general.

• ka (dict) – IMPORTANT: Keyword arguments passed to normalisr.gocovt.goe to deter-
mine how to perform GO enrichment study. If you see no gene mapped, check your gene
name conversion rule in conversion parameter of normalisr.gocovt.goe. GO annotation have
a specific gene ID system.

Returns

• principals (list of str) – List of principal genes.

• goe (pandas.DataFrame) – GO enrichment results.

• gotop (str) – Top enriched GO ID.

• genes (list of str) – List of genes in the gotop GO ID.

normalisr.gocovt.pc1(d)
Computes top principal component.

Parameters d (numpy.ndarray(shape=(n1,n2))) –

Returns

Return type numpy.ndarray(shape=(n2,))

normalisr.gocovt.pccovt(dt, dc, namet, genes, condcov=True)
Introduces an extra covariate from the top principal component of given genes.

3.5. normalisr.gocovt 25

http://geneontology.org/docs/guide-go-evidence-codes/
http://geneontology.org/docs/download-ontology/
http://geneontology.org/docs/download-ontology/

Normalisr

The extra covariate is the top principal component of normalized expressions of the selected genes. Adding a
covariate from housekeeping pathway can reveal cell-type-specific activities in co-expression networks.

Parameters

• dt (numpy.ndarray(shape=(n_gene,n_cell))) – Normalized expression ma-
trix.

• dc (numpy.ndarray(shape=(n_cov,n_cell))) – Existing normalized covariate
matrix.

• namet (list of str) – List of gene names for rows in dt.

• genes (list of str) – List of gene names to include in finding top PC of their expres-
sion as an extra covariate.

• condcov (bool) – Whether to condition on existing covariates before computing top PC.
Default: True.

Returns New normalized covariate matrix.

Return type numpy.ndarray(shape=(n_cov+1,n_cell))

normalisr.gocovt.toratio(s)
Converts a pandas series of string to numeric ratios.

Parameters s (pandas.Series of string) –

Returns

Return type panda.Series of float

3.6 normalisr.lcpm

normalisr.lcpm.lcpm(reads, normalize=True, nth=0, ntot=None, varscale=0, seed=None,
lowmem=True, nocov=False)

Computes Bayesian log CPM from raw read counts.

The technical sampling process is modelled as a Binomial distribution. The logCPM given read counts is a
Bayesian inference problem and follows (shifted) Beta distribution. We use the expectation of posterior logCPM
as the estimated expression levels. Resampling function is also provided to account for variances in the posterior
distribution.

Warning: Modifying keyword arguments other than nth or seed is neither recommended nor supported for
function ‘lcpm’. Do so at your own risk.

Parameters

• reads (numpy.ndarray(shape=(n_gene,n_cell),dtype='uint')) – Read
count matrix.

• normalize (bool) – Whether to normalize output to logCPM per cell. Default: True.

• nth (int) – Number of threads to use. Defaults to 0 to use all cores automatically detected.

• ntot (int) – Manually sets value of total number of reads in binomial distribution. Since
the posterior distribution stablizes quickly as ntot increases, a large number, e.g. 1E9 is
good for general use. Defaults to None to disable manual value.

• varscale (float) – Resamples estimated expression using the posterior Beta distribu-
tion. varscale sets the scale of variance than its actual value from the posterior distribution.
Defaults to 0, to compute expectation with no variance.

26 Chapter 3. All API

Normalisr

• seed (int) – Initial random seed if set.

• lowmem (bool) – Low memory mode disable mean and var in Returns and therefore saves
memory.

• nocov (bool) – Whether to skip producing covariate variables. If True, output cov=None

Returns

• lcpm (numpy.ndarray(shape=(n_gene,n_cell))) – Estimated expression as logCPM from
read counts.

• mean (numpy.ndarray(shape=(n_gene,n_cell)) or None) – Mean/Expectation of lcpm’s ev-
ery entry’s posterior distribution. None if lowmem=True.

• var (numpy.ndarray(shape=(n_gene,n_cell)) or None) – Variance of lcpm’s every entry’s
posterior distribution. None if lowmem=True.

• cov (numpy.ndarray(shape=(3,n_cell))) – Cellular summary covariates computed from read
count matrix that may confound lcpm. Contains:

– cov[0]: Log total read count per cell

– cov[1]: Number of 0-read genes per cell

– cov[2]: cov[0]**2

normalisr.lcpm.scaling_factor(dt, varname='nt0mean', v0=0, v1='max')
Computes scaling factor of variance normalization for every gene.

Lowly expressed genes need full variance normalization because of technical confounding from sequencing
depth. Highly expressed genes do not need variance normalization because they are already accurately mea-
sured. The scaling factor operates as a exponential factor on the variance normalization scale for each gene. It
should be maximum/minimum for genes with lowest/highest expression.

Warning: Modifying keyword arguments is neither recommended nor supported for function ‘scaling_factor’.
Do so at your own risk.

Parameters

• dt (numpy.ndarray(shape=(n_gene,n_cell),dtype='uint')) – Read
count matrix.

• varname (str) – Variable used to compute scaling factor for each gene. Can be:

– logtpropmean: log(dt.mean(axis=1)/dt.mean(axis=1).sum())

– logtmeanprop: log((dt/dt.sum(axis=0)).mean(axis=1))

– nt0mean: (dt==0).mean(axis=1)

– lognt0mean: log((dt==0).mean(axis=1))

– log1-nt0mean: log(1-(dt==0).mean(axis=1))

Defaults to nt0mean.

• v0 (float) – Variable values to set scaling factor to 0 (for v0) and 1 (for v1). Linear
assignment is applied for values inbetween. Can be:

– max: max

– min: min

– any float: that float

3.6. normalisr.lcpm 27

Normalisr

• v1 (float) – Variable values to set scaling factor to 0 (for v0) and 1 (for v1). Linear
assignment is applied for values inbetween. Can be:

– max: max

– min: min

– any float: that float

Returns Scaling factor of variance normalization for each gene

Return type numpy.ndarray(shape=(n_gene,))

normalisr.lcpm.trigamma(x)
Tri-gamma function .

Parameters x (float or numpy.ndarray) – Input value(s)

Returns

Return type float or numpy.ndarray

3.7 normalisr.norm

normalisr.norm.compute_var(dt, dc, stepmax=1, eps=1e-06)
Computes variance normalization scale for each cell.

Performs a log-linear fit of the variance of each cell with covariates. Optionally use Expectation-
Maximization(EM)-like method to iteratively fit mean and variance. For EM-like method, early-stopping is
suggested because of overfitting issues.

Parameters

• dt (numpy.ndarray(shape=(n_gene,n_cell))) – Bayesian LogCPM expres-
sion level matrix.

• dc (numpy.ndarray(shape=(n_cov,n_cell))) – Covariate matrix.

• stepmax (int) – Maximum number of EM-like iterations of mean and variance normal-
ization. Stop of iteration is also possible when relative accuracy target is reached. Defaults
to 1, indicating no iterative normalization.

• eps (float) – Relative accuracy target for early stopping. Constrains the maximum rela-
tive difference of fitted variance across cells compared to the last step. Defaults to 1E-6.

Returns Inverse sqrt of fitted variance for each cell, i.e. the multiplier for variance normalization.
For iterative normalization, the optimal step will be returned, defined as having the minimal max
relative change across cells.

Return type numpy.ndarray(shape=(n_cell,))

normalisr.norm.normcov(dc, c=True)
Normalizes each continuous covariate to 0 mean and unit variance.

Optionally introduces constant 1 covariate as intercept. Categorical covariates should be in binary/one-hot form,
and will be left unchanged.

Parameters

• dc (numpy.ndarray(shape=(n_cov,n_cell))) – Current covariate matrix. Use
empty matrix with n_cov=0 if no covariate.

• c (bool) – Whether to introduce a constant 1 covariate.

28 Chapter 3. All API

https://en.wikipedia.org/wiki/Trigamma_function

Normalisr

Returns Processed covariate matrix.

Return type numpy.ndarray(shape=(n_cov+1 if c else n_cov,n_cell))

normalisr.norm.normvar(dt, dc, w, wt, dextra=None, cat=1, nth=1, bs=500, keepvar=True, norm-
mean=False)

Performs mean and variance normalizations.

Expression levels are normalized at mean and then at variance levels. Effectively each gene x is multiplied
by w**wt[x] before removing covariates as dc*(w**wt[x]). Continuous covariates are normalized at variance
levels. Effectively covariates are transformed to dc*w. Therefore, variance normalization for expression are
scaled differently for each gene.

Parameters

• dt (numpy.ndarray(shape=(n_gene,n_cell))) – Bayesian logCPM matrix.

• dc (numpy.ndarray(shape=(n_cov,n_cell))) – Covariate matrix.

• w (numpy.ndarray(shape=(n_cell,))) – Computed variance normalization mul-
tiplier.

• wt (numpy.ndarray(shape=(n_gene,))) – Computed scaling factor for each gene.

• dextra (numpy.ndarray(shape=(n_extra,n_cell))) – Extra data matrix also
to be normalized like continuous covariates.

• cat (int) – Whether to normalize categorical/binary covariates (those with only 0 or 1s).
Defaults to 1.

– 0: No

– 1: No except constant-1 covariate (intercept)

– 2: Yes

• nth (int) – Number of parallel threads.

• bs (int) – Batch size for each job.

• keepvar (bool) – Whether to maintain the variance of each gene invariant in mean nor-
malization step. If so, expression variances are scaled back to original after mean normal-
ization and before variance normalization. This function only affects overall variance level
and its downstreams (e.g. differential expression log fold change). This function would not
affect P-value computation. Default: True.

• normmean (bool) – Whether to remove covariates from expression at mean level. This
is accounted for in hypothesis testing with linear models so this option makes no difference
here. However, this can be helpful for other purposes of analyses.

Returns

• (dtn,dcn) or (dtn,dcn,dextran) if dextra is not None

• dtn (numpy.ndarray(shape=(n_gene,n_cell))) – Normalized gene expression matrix.

• dcn (numpy.ndarray(shape=(n_cov,n_cell))) – Normalized covariate matrix.

• dextran (numpy.ndarray(shape=(n_extra,n_cell))) – Normalized extra data matrix.

normalisr.norm.normvar1(dt, dc, w2=None)
A single-threaded function to normalize a subset of transcriptome.

Should not be invoked directly.

Parameters

3.7. normalisr.norm 29

Normalisr

• dt (numpy.ndarray(shape=(n_gene,n_cell))) – Bayesian logCPM matrix
subset.

• dc (numpy.ndarray(shape=(n_cov,n_cell))) – Covariate matrix.

• w2 (numpy.ndarray(shape=(n_gene,))) – Intemediate weight computed in nor-
mvar for subset.

Returns Normalized gene expression matrix subset.

Return type numpy.ndarray(shape=(n_gene,n_cell))

3.8 normalisr.parallel

normalisr.parallel.autopooler(n, it, *a, chunksize=1, dummy=False, return_iter=False, un-
ordered=False, **ka)

Uses multiprocessing.Pool or multiprocessing.dummy.Pool to run iterator in parallel.

Parameters

• n (int) – Number of parallel processes. Set to 0 to use auto detected CPU count.

• it (iterator of (function,tuple,dict)) – Each iteration computes func-
tion(*tuple,**dict). function must be picklable, i.e. a base level function in a module
or file.

• a (tuple) – Arguments passed to Pool.

• chunksize (int) – Number of iterations passed to each process each time.

• dummy (bool) – Whether to use multiprocessing.dummy instead

• return_iter (bool) – Not Implemented. Whether to return iterator of results instead.
If not, return list of results.

• unordered (bool) – Whether the order of output matters.

• ka (dict) – Keyword arguments passed to Pool

Returns Results returned by function(*tuple,**dict), in same order of the iterator if not unordered.

Return type list (or iterator if return_iter) of any

3.9 normalisr.qc

normalisr.qc.qc_outlier(dw, pcut=1e-10, outrate=0.02)
Quality control by removing cell outliers by variance.

Fit normal distribution on the inverse sqrt variance to detect outliers. This is performed by iterative estimation
of normal distribution with non-outliers and then determination of outliers with the normal distribution.

Parameters

• dw (numpy.ndarray(shape=(n_cell,))) – Fitted inverse sqrt cell variance.

• pcut (float) – Bonferroni P-value cutoff for asserting outliers in a normal distribution of
fitted cell variance. Default: 1E-10.

• outrate (float) – Upper bound of proportion of outliers on either side of variance
distribution. Used for initial outlier assignment and final validity check. Default: 0.02.

30 Chapter 3. All API

Normalisr

Returns Whether each cell passed QC

Return type numpy.ndarray(shape=(n_cell,),dtype=bool)

normalisr.qc.qc_reads(reads, n_gene, nc_gene, ncp_gene, n_cell, nt_cell, ntp_cell)
Quality control by bounding read counts.

Quality control is perform separately on genes based on their cell statisics and on cells based on their gene
statistics, iteratively until dataset remains unchanged. A gene or cell is removed if any of the QC criteria is
violated at any time in the iteration. All QC parameters can be set to 0 to disable QC filtering for that criterion.

Parameters

• reads (numpy.ndarray((n_gene,n_cell),dtype='uint')) – Read count
matrix.

• n_gene (int) – Lower bound on total read counts for gene QC.

• nc_gene (int) – Lower bound on number of expressed cells for gene QC.

• ncp_gene (float) – Lower bound on proportion of expressed cells for gene QC.

• n_cell (int) – Lower bound on total read counts for cell QC.

• nt_cell (int) – Lower bound on number of expressed genes for cell QC.

• ntp_cell (float) – Lower bound on proportion of expressed genes for cell QC.

Returns

• genes_select (numpy.ndarray(dtype=’uint’)) – Array of indices of genes passed QC.

• cells_select (numpy.ndarray(dtype=’uint’)) – Array of indices of cells passed QC.

3.9. normalisr.qc 31

Normalisr

32 Chapter 3. All API

CHAPTER

FOUR

INDICES AND TABLES

• genindex

• modindex

• search

33

Normalisr

34 Chapter 4. Indices and tables

PYTHON MODULE INDEX

n
normalisr.association, 15
normalisr.binnet, 20
normalisr.coex, 22
normalisr.de, 22
normalisr.gocovt, 24
normalisr.lcpm, 26
normalisr.norm, 28
normalisr.normalisr, 6
normalisr.parallel, 30
normalisr.qc, 30

35

Normalisr

36 Python Module Index

INDEX

A
association_test_1() (in module normal-

isr.association), 15
association_test_2() (in module normal-

isr.association), 16
association_test_4() (in module normal-

isr.association), 16
association_test_5() (in module normal-

isr.association), 17
association_tests() (in module normal-

isr.association), 18
autopooler() (in module normalisr.parallel), 30

B
bh() (in module normalisr.binnet), 20
binnet() (in module normalisr.binnet), 21
binnet() (in module normalisr.normalisr), 6

C
coex() (in module normalisr.coex), 22
coex() (in module normalisr.normalisr), 6
compute_var() (in module normalisr.norm), 28
compute_var() (in module normalisr.normalisr), 7

D
de() (in module normalisr.de), 22
de() (in module normalisr.normalisr), 7

G
goe() (in module normalisr.gocovt), 24
gotop() (in module normalisr.gocovt), 25
gotop() (in module normalisr.normalisr), 9

I
inv_rank() (in module normalisr.association), 19

L
lcpm() (in module normalisr.lcpm), 26
lcpm() (in module normalisr.normalisr), 9

M
module

normalisr.association, 15
normalisr.binnet, 20
normalisr.coex, 22
normalisr.de, 22
normalisr.gocovt, 24
normalisr.lcpm, 26
normalisr.norm, 28
normalisr.normalisr, 6
normalisr.parallel, 30
normalisr.qc, 30

N
nodiag() (in module normalisr.binnet), 21
normalisr.association

module, 15
normalisr.binnet

module, 20
normalisr.coex

module, 22
normalisr.de

module, 22
normalisr.gocovt

module, 24
normalisr.lcpm

module, 26
normalisr.norm

module, 28
normalisr.normalisr

module, 6
normalisr.parallel

module, 30
normalisr.qc

module, 30
normcov() (in module normalisr.norm), 28
normcov() (in module normalisr.normalisr), 10
normvar() (in module normalisr.norm), 29
normvar() (in module normalisr.normalisr), 10
normvar1() (in module normalisr.norm), 29

P
pc1() (in module normalisr.gocovt), 25
pccovt() (in module normalisr.gocovt), 25

37

Normalisr

pccovt() (in module normalisr.normalisr), 11
prod1() (in module normalisr.association), 20

Q
qc_outlier() (in module normalisr.normalisr), 11
qc_outlier() (in module normalisr.qc), 30
qc_reads() (in module normalisr.normalisr), 12
qc_reads() (in module normalisr.qc), 31

R
rediag() (in module normalisr.binnet), 21

S
scaling_factor() (in module normalisr.lcpm), 27
scaling_factor() (in module normalisr.normalisr),

12

T
toratio() (in module normalisr.gocovt), 26
trigamma() (in module normalisr.lcpm), 28

38 Index

	Normalisr
	Installation
	Usage
	Documentation
	Examples and pipelines
	Contact
	References
	FAQ

	User API
	Quality control
	Normalization
	Differential expression
	Co-expression
	API list

	All API
	normalisr.association
	normalisr.binnet
	normalisr.coex
	normalisr.de
	normalisr.gocovt
	normalisr.lcpm
	normalisr.norm
	normalisr.parallel
	normalisr.qc

	Indices and tables
	Python Module Index
	Index

