#### **European Workshop on** On-Board Data Processing 14-17 June 2021 Conline Event













European Workshop on On-Board Data Processing 14-17 June 2021 Contine Event



#### "Survey of High-Performance Processors and FPGAs for On-Board Processing and Machine Learning Applications"

**David Steenari**<sup>1</sup>, Kyra Förster<sup>1</sup>, Derek O'Callaghan<sup>3</sup>, Maris Tali<sup>1</sup>, Craig Hay<sup>2</sup>, Mikulas Cebecauer<sup>2</sup>, Murray Ireland<sup>2</sup>, Sheila McBreen<sup>3</sup>, Roberto Camarero<sup>1</sup>

<sup>1</sup> ESA/ESTEC

<sup>2</sup> School of Physics, University Colleague Dublin

<sup>3</sup> Craft Prospect

#### 

#### Survey of High-Performance Processors and FPGAs for On-Board Processing and Machine Learning Applications



- Over the last years, increase in requirements for on-board data processing
- Many new devices being considered for on-board processing
- In this work:
  - A survey of both COTS and RHBD devices supporting high-performance OBP
  - Currently used in space applications or have been announced to be used in future applications
- Survey has been carried out through:
  - ESA/ESTEC internal work and inputs from several fully-funded activities
    - Including on-board processing inputs for internal list of COTS devices for future activities
  - "FOPIEA" TRP activity, Craft Prospect and UCD
  - (ESA Technical Officer: Roberto Camarero)
    - Survey of devices and machine learning tools
    - See also other FOPIEA paper at OBDP2021: "Applications and Enabling Technologies for On-Board Processing and Information Extraction: Trends and Needs"



### Survey of High-Performance Processors and FPGAs for On-Board Processing and Machine Learning Applications

# BACKGROUND AND MOTIVATION

David Steenari | 16/06/2021 | Slide 4

### Survey Background and OBP Needs

- Recently there has been an increasing interest in On-Board Processing (OBP) in commercial and academic work:
  - Use of COTS processors and FPGAs in New Space small satellites enabling higher performances and new applications
  - Constellations are cost-driven, must adapt standardization
  - Increasing interest in machine learning applications on-board
  - New mission modes:
    - EO on-board analytics;
    - Telecom regenerative payloads & beamforming, on-board RF analytics
- Increasing on-board processing requirements include
  - Overall higher payload data rates
  - Advanced on-board data selection (object detection, cloud screening, etc.) to meet downlink rates
  - Faster product to customer, moving traditional ground processing to on-board
    - E.g. hyperspectral image segmentation and event detection
- Clear that high-performance systems are needed in current and future spacecraft
- More information on applications  $\rightarrow$  see FOPIEA presentation/paper by Craft Prospect on Day #1<sub>David Steenari</sub> | 16/06/2021 | Slide 5







### **Issue Defining Processing Needs of Missions**

- For commercial EO and telecom, OBP is necessary for the current generation of satellites
  - For commercial EO, this is mostly solved with (RT) COTS devices at the moment
  - For Telecom, dedicated RHBD ASICs are (still) the most common
- Feasibility of on-board processing complexity is heavily influenced by device availability
  - Novel on-board processing is usually too risky
- Instead equipment availability with strong heritage and high TRL is the driver
  - Equipment availability is driven by key component availability
- The unavailability of high-performance processing, drives the selection of instrument concepts
  - Few components are being developed for the pure reason of innovating and enabling new mission concepts
  - Advanced on-board processing is a mission enabler, but is not always being adopted
- Developments of new RHBD space processors in modern (beyond 28nm) is costly will require significant coordinated effort
  - 7nm EU-funded activity "DUROC" with NanoXplore now announced



Device availability



Processing Requirements

David Steenari | 16/06/2021 | Slide 6

### Device Availability: COTS vs. RT vs. RHBD

- As we all know, high-performance RHBD processors are only a handful:
  - ESA: GR740, HPDP, DAHLIA, SX-4000; other: HPSC (US), RC64 (Israel)
- Market non-availability of critical component, drives other possible solutions needs to be considered
  - Use of COTS device to solve specific application-driven challenges where RHBD devices are not possible
- > Definitions for the purpose of this presentation:
  - RHBD Radiation hardened by design devices; qualified (MIL/ECSS) packages
    - > Requires only little additional system radiation hardening
  - > **RT** Not hardened devices; but radiation tested; qualified (MIL/ECSS) packages
    - > Requires dedicated system radiation hardening
  - > **COTS** Commercial devices; hopefully radiation tested; not qualified package
    - > Requires dedicated system radiation hardening and possibly radiation test
    - > Otherwise: could compromise on mission lifetime, availability and reliability
- Currently only RHBD and RT are possible for most ESA (high-risk) missions. RT requires dedicated analysis for target orbits. COTS only possible through up-screening campaign (>1MEUR)
  - Industry view in backup slides





RHBD example: GR740 (CAES Cobham Gaisler)



RT example: XQRKU060 (Xilinx)



COTS example: Myriad 2 (Intel)

David Steenari | 16/06/2021 | Slide 7

#### · = ■ ► = = + ■ + ■ = ≔ = ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

### **Requirements for COTS Processors**

- **High performance** the main driver for COTS processors, but also:
  - Radiation tolerance
    - TID minimum requirements driven by technology node
    - SEL/SEU/SEFI mitigation on system-level and/or software driven by design
  - Fault-detection
    - Correcting codes (ECC) on caches and external memory interfaces EDAC
  - Packaging and power
    - Single-point thermal load, generally not designed for operating conditions in vacuum (maximum 10W components otherwise complex thermal design)
  - Product and market aspects
    - Long-term support for device
    - Availability of device lot tracability (Single Controlled Baseline)
- Other qualitative aspects must also be taken into account:
  - Availability of development, verification and debugging tools
  - Size of user community adoption of tools
  - Support for reliable real-time operating systems
  - Access to open source APIs and drivers for inspection
- Conclusion Selection of processor devices requires coordination of experts in multiple domains
  - Electronics system experts; components experts; environmental experts; quality experts; software experts; etc.







#### David Steenari | 16/06/2021 | Slide 8

### Challenges and Opportunities for COTS processors

- Limited device selection for COTS processors: must limit power (<10W), reliability functions (ECC/EDAC) not always present</li>
  - But: Automotive/IoT/Mobile/drones markets are enablers for low-power reliable processors
- Commercially successful devices comes with additional benefits
  - Could provide higher performance and higher integration (SWaP)
  - Faster time-to-market driven by available expertise and quality of tools
  - **Reuse / develop once** (for ground application processing and for on-board)
  - More AGILE development more affordable HIL testing
- European guidelines for the use of COTS components already exist:
   ECSS-Q-ST-60-13C "Commercial electrical, electronic and electromechanical (EEE) components"
  - Currently being expanded with COTS guidelines, see also roundtable at the end of the day
- Cannot afford to do the necessary tests for all possible devices must focus on a subset of devices. Evaluation flow:
  - 1. Device down-selection through computational benchmarks (OBPMark)
  - 2. "GO/NO-GO" radiation test (SEL test, SEFI tests)
  - 3. Full radiation characterization (SEE heavy ions, protons; TID test)
  - 4. Device up-screening and qualification
- High NRE costs of a full qualification/procurement/design for space campaign for a complex SoC
  - Dedicated radiation test methods for device functions (processors, co-processors, on-chip memories, interfaces, etc.)
     finding failure modes
  - Sharing of test results difficult, when competitive advantage



# Rad-Hard Memories Hi-Rel Power COTS COTS Supplies COTS Rad-Hard Processor Rad-Hard Watchdog Latch-up Rad-Hard Interfaces





### Survey of High-Performance Processors and FPGAs for On-Board Processing and Machine Learning Applications

# SURVEY CONTENTS

David Steenari | 16/06/2021 | Slide 10

### Survey Overview



- Devices classes included:
  - Single- and multicore processors
  - DSPs and manycore processors
  - Embedded GPUs
  - FPGAs (with and without hardened processor cores, "MPSoC")
- Not included:
  - Lower performance processors (e.g. single core LEON)
  - Neuromorphic processors *topic for the future*
- Considered data
  - Peak performance and size (FPGA logic resources)
  - Qualification status
  - Radiation data availability
  - Machine learning tools availability
- Method: Paper survey: available papers; vendor datasheets; module datasheets; usage in ESA missions

### **Example Devices**

- Single- and multicore processors
  - GR740 RHBD guadcore LEON4
  - Teledyne e2v RT (qualified COTS) quadcore ARM Cortex A
  - HPSC heterogenous ARM Cortex-A and Cortex-R processor
- DSPs and manycore processors
  - HPDP 40x core RHBD stochastic grid-array, 2x VLIW cores
  - RC64 64x core VLIW DSP processor with hardware scheduler
  - SX4000 Quad ARM A53 and DSPs (optimized for SDR processing)
  - Kalray MPPA manycore processor
- Embedded GPUs
  - NVIDIA TX2 and Xavier
  - AMD "Steppe Eagle", Embedded Ryzen V1000 and V2000
- FPGAs (and "MPSoc")
  - Xilinx Virtex5QV, XQRKU060, ZUS+, Versal AI, Versal AI Edge (just released)
  - NG-LARGE, NG-ULTRA, ULTRA-7
  - RTG4, PolarFire-RT, PolarFire-SoC





COBHAM







### RHBD / RT Processors Overview



| Name         | Vendor         | Device Class     | Qualification | Process<br>node | # of cores | Max Freq. (MHz) | Peak Perf.<br>(DMIPS) | Typ. power<br>(W) |
|--------------|----------------|------------------|---------------|-----------------|------------|-----------------|-----------------------|-------------------|
| GR712RC      | Cobham Gaisler | Multicore CPU    | MIL           | 180 nm          | 2          | 100             | 200                   | 1.8               |
| GR740        | Cobham Gaisler | Multicore CPU    | QML-V         | 65 nm           | 4          | 250             | 1,700                 | 1.9               |
| SAMRH71      | Microchip      | Micro Controller | QML-V         | 150 nm          | 1          | 100             | 200                   | -                 |
| DAHLIA       | NanoXplore     | FPGA SoC         | ECSS          | 28 nm           | 4          | 600             | 4,000                 | -                 |
| P2020        | Teledyne e2v   | Multicore CPU    | ECSS (COTS)   | 45 nm           | 2          | 1,330           | 6,400                 | 7.2               |
| P5020        | Teledyne e2v   | Multicore CPU    | ECSS (COTS)   | 45 nm           | 2          | 2,000           | 12,000                | 16.0              |
| P4080        | Teledyne e2v   | Multicore CPU    | ECSS (COTS)   | 45 nm           | 8          | 1,500           | 30,000                | 16.0              |
| LS1046-Space | Teledyne e2v   | Multicore CPU    | ECSS (COTS)   | 28 nm           | 4          | 1,800           | 30,000                | 7.0               |
| PC7448       | Teledyne e2v   | Singlecore CPU   | QML-Y         | 90 nm           | 1          | 1,267           | 3,000                 | 10.0              |
| PC8548       | Teledyne e2v   | Singlecore CPU   | QML-Y         | 90 nm           | 1          | 1,200           | 2,200                 | 7.9               |
| 750FX        | IBM            | Singlecore CPU   | COTS          | 130 nm          | 1          | 800             | 1,800                 | 5.0               |
| RAD5545      | BAE Systems    | Multicore CPU    | QML-V         | 45 nm           | 4          | 466             | 1,398                 | -                 |
| HPSC         | Boeing         | Multicore CPU    | -             | 32 nm           | 8 + 3      | 800             | 17,300                | 10.0              |
| HPDP         | ISD / Airbus   | CGGA             | ECSS          | 65 nm           | 40 + 2     | 250             | -                     | 1.7               |
| RC64         | Ramon Space    | Manycore DSP     | MIL*          | 65 nm           | 64         | 130             | -                     | 4.5               |

David Steenari | 16/06/2021 | Slide 13

+

#### \_ II 🛌 :: 🖛 + II 💻 🚝 \_ II II \_ \_ \_ :: 📰 🛶 🚳 II \_ \_ :: II 🗰 🐜 🖕

### **COTS Processors Overview**



| Name                            | Vendor                     | Device<br>class               | Qual.                | Process<br>node         | # of cores                          | Max Frequency<br>(MHz)                    | Peak Performance                              | Power<br>(W)           |
|---------------------------------|----------------------------|-------------------------------|----------------------|-------------------------|-------------------------------------|-------------------------------------------|-----------------------------------------------|------------------------|
| Keystone II                     | TI                         | DSP SoC                       | COTS                 | 28 nm                   | 8 (DSP)                             | 1,250 (DSP)                               | 198.4 GFLOPS                                  | 21.69                  |
| Myriad 2<br>Myriad X            | Intel<br>Intel             | VPU SoC<br>VPU SoC            | COTS<br>COTS         | 28 nm<br>16 nm          | 12 (DSP)<br>16 (DSP)                | 600 (DSP)<br>700 (DSP)                    | 1 TOPS (DSPs)<br>4 TOPS (total), 1 TOPS (NPU) | 1<br><2                |
| Tegra X1<br>Tegra X2<br>Xavier  | NVIDIA<br>NVIDIA<br>NVIDIA | GPU SoC<br>GPU SoC<br>GPU SoC | COTS<br>COTS<br>COTS | 20 nm<br>16 nm<br>12 nm | 256 (GPU)<br>256 (GPU)<br>384 (GPU) | 1,000 (GPU)<br>1,300 (GPU)<br>1,377 (GPU) | 512 GFLOPS<br>750 GFLOPS<br>21 TOPS (total)   | 15<br>15<br>15         |
| Steppe Eagle<br>V1605B<br>V2718 | AMD<br>AMD<br>AMD          | GPU SoC<br>GPU SoC<br>GPU SoC | COTS<br>COTS<br>COTS | 28 nm<br>14 nm<br>7 nm  | 4 (CPU)<br>4 (CPU)<br>8 (CPU)       | 2,000 (CPU)<br>3,600 (CPU)<br>4,150 (CPU) | 87 GFLOPS<br>3.6 TFLOPS<br>1.43 TFLOPS        | 7-25<br>12-25<br>10-25 |
| i.MX 8M Plus                    | NXP                        | Media SoC                     | COTS                 | 14 nm                   | 4 (CPU)                             | 1,800 (CPU)                               | 2.3 TOPS (NPU)                                | <2                     |
| MPPA3-80                        | Kalray                     | Manycore                      | COTS                 | 16 nm                   | 80 (DSP)                            | 1,200 (DSP)                               | 25 TOPS, 4 TFLOPS                             | -                      |
| Coral Edge TPU                  | Google                     | AI accel.                     | COTS                 | -                       | -                                   | -                                         | 4 TOPS                                        | 2                      |

David Steenari | 16/06/2021 | Slide 14

\*

#### · = ■ ▶ = = + ■ + ■ = ≝ = ■ ■ ■ = = = = ■ ■ ■ ■ = = = ■ ■

#### Processor Availability vs. Relative Performance





David Steenari | 16/06/2021 | Slide 15

\*

= II 🕨 ## ## #II 💻 🚝 == II II = = = ## 🛶 🔯 II == ## ## ##

#### **FPGAs Overview**



| Name              | Part        | Vendor     | Hard proc. | Rad. | Qual.   | Process<br>node | LUTs<br>/ LEs | FFs       | DSPs  | RAMs<br>(kb) |
|-------------------|-------------|------------|------------|------|---------|-----------------|---------------|-----------|-------|--------------|
| Virtex-4QV        | XQR4V-FX140 | Xilinx     | Yes        | RT   | QML-V   | 90 nm           | 142,128       | 126,336   | 192   | 9,936        |
| Virtex-5QV        | XQR5V-FX130 | Xilinx     | No         | RHBD | QML-V   | 65 nm           | 131,072       | 81,920    | 320   | 10,000       |
| Kintex Ultrascale | XQRKU060    | Xilinx     | No         | RT   | QML-Y   | 20 nm           | 331,680       | 663,360   | 2,760 | 38,000       |
| Zynq7000          | XC7Z020     | Xilinx     | Yes        | COTS | Defence | 28 nm           | 53,200        | 106,400   | 220   | 4,900        |
| Zynq Ultrascale+  | ZU9EG       | Xilinx     | Yes        | COTS | Defence | 16 nm           | 274,000       | 548,000   | 2,520 | 32,100       |
| Versal AI Core    | VC1902      | Xilinx     | Yes        | COTS | COTS    | 7 nm            | 899,840       | 1,799,680 | 1,968 | 34,000       |
| ProASIC3-RT       | RT3PE3000L  | Microsemi  | No         | RT   | MIL     | 130 nm          | 35,000        | 75,264    | 0     | 504          |
| SmartFusion2      | M2S050      | Microsemi  | Yes        | COTS | COTS    | 65 nm           | 56,340        | -         | 72    | 1,314        |
| RTG4              | RTG4G150    | Microsemi  | No         | RHBD | QML-V   | 65 nm           | 151,824       | 151,824   | 462   | 5,200        |
| PolarFire-RT      | RTPF500T    | Microsemi  | No         | RT   | QML-    | 28 nm           | 481,000       | 481,000   | 1,480 | 33,000       |
| PolarFire SoC     | MPFS460T    | Microsemi  | Yes        | COTS | COTS    | 28 nm           | 461,000       | 461,000   | 1,420 | 31,600       |
| NG-MEDIUM         | NX1H35AS    | NanoXplore | No         | RHBD | ECSS    | 65 nm           | 34,272        | 32,256    | 112   | 2,688        |
| NG-LARGE          | NX1H140TSP  | NanoXplore | Yes        | RHBD | ECSS    | 65 nm           | 137,088       | 129,024   | 384   | 9,216        |
| NG-ULTRA          | NX2H540TSC  | NanoXplore | Yes        | RHBD | ECSS    | 28 nm           | 536,928       | 505,344   | 1,344 | 32,256       |
| Cyclone V         | 5CSXC6      | Intel      | Yes        | COTS | COTS    | 28 nm           | 110,000       | 166,036   | 112   | 5,570        |
| Arria 10          | GX 570      | Intel      | Yes        | COTS | COTS    | 20 nm           | 570,000       | 747,000   | 1,523 | 40,000       |
| Arria 10          | SX 570      | Intel      | Yes        | COTS | COTS    | 20 nm           | 570,000       | 747,000   | 1,523 | 40,000       |

David Steenari | 16/06/2021 | Slide 16

\*

#### 

### FPGA Availability vs. Relative Size





**European Space Agency** 

+

### Device Availability vs. Technology Nodes





= II 🛌 == + II = 😇 = II II = = = 🖽 🛶 🚺 II = = 🖬 🖽 💥 🛀

**European Space Agency** 

+

### Machine Learning Tools Overview



- Machine learning tools include:
  - Training
  - Optimization
    - Quantization, pruning etc.
  - Inference engines
- Inference engines are required to be implemented per device
  - Can be implemented in software (for processors, GPUs, etc)
  - Can also be targeting dedicated hardware accelerators
  - ...or co-processors in FPGAs
  - ... or HLS generators for FPGAs

#### David Steenari | 16/06/2021 | Slide 19

#### · = ■ ▶ = = + ■ + ■ = ≝ = ■ ■ ■ = = = = ₩ → ■ ■ ■ = = ■ ■ ₩ · ·

### Machine Learning Tools Examples



- Many device (in particular COTS) come with ML inference tools
- For COTS processors several tools are available
  - ARM NN for Arm Cortex-A processors
  - TensorRT for NVIDIA GPU SoCs
  - ROCm for AMD GPU SoCs
  - OpenVINO for Myriad 2, Myriad X
- For FPGAs:
  - Co-processors:
    - Xilinx VitisAI / Space-DPU for Kintex Ultrascale, ZUS+, Versal, etc (presented yesterday in Session #6)
    - Microsemi VectorBlox for PolarFire-RT, PolarFire-SoC (presented yesterday in Session #6)
  - HLS FPGA generators (e.g. hls4ml, FINN, etc)
- Space procesors:
  - Experimental tools for inference on LEON processors (TFmin)
    - Some experiments on-going at ESTEC on TF Lite Micro on LEON
  - RC64 ML tool (presented yesterday in Session #6)
  - HPDP ML tool under development

David Steenari | 16/06/2021 | Slide 20

#### □ II ▶ II ■ + II ■ ⊆ □ II II □ □ H ▲ Ø II □ II ₩ ⊨

### **Overview of Machine Learning Inference Tools**



| Tool               | Developer                 | Туре          | Possible targets              | DNN Frameworks                                                                                        | Non-DNN | Open-Source  |
|--------------------|---------------------------|---------------|-------------------------------|-------------------------------------------------------------------------------------------------------|---------|--------------|
| XLA                | Google                    | SW inference  | Processors                    | TensorFlow (1.x, 2.x)                                                                                 | No      | Yes          |
| TensorFlow Lite    | Google                    | SW inference  | Processors                    | TensorFlow (1.x, 2.x)                                                                                 | No      | Yes          |
| Coral              | Google                    | SW inference  | Edge TPU                      | TensorFlow Lite                                                                                       | No      | Yes          |
| TFMin              | Uni Surrey, Airbus        | SW inference  | LEON/SPARC                    | TensorFlow (>1.13.0)                                                                                  | No      | Yes          |
| TFLM               | Google                    | SW inference  | Cortex-M, ESP32               | TensorFlow Lite for Microprocessors                                                                   | No      | Yes          |
| ARM NN             | ARM                       | SW inference  | Cortex-A, Mali GPUs           | TensorFlow Lite, ONNX                                                                                 | No      | Yes          |
| JetPack (TensorRT) | NVIDIA                    | SW inference  | Jetson, CUDA GPUs             | TensorFlow (1.x, 2.0), Caffe, ONNX                                                                    | Yes     | Partially    |
| ROCm               | AMD                       | SW inference  | AMD SoC devices               | TensorFlow (1.x, 2.x), Caffe2, Py-<br>Torch, ONNX, NNEF                                               | Yes     | Yes          |
| OpenVINO           | Intel                     | SW inference  | Myriad devices                | Caffe(2), MXNet 1.5.x, TensorFlow<br>1.15, 2.2.x, Kaldi, ONNX 1.7.0 (Py-<br>Torch, Keras, CNTK)       | No      | Yes          |
| AccessCore (KaNN)  | Kalray                    | SW inference  | MPPA                          | TensorFlow, Caffe (ONNX to follow)                                                                    | Yes     | No           |
| NOGAH              | Ramon.Space               | SW inference  | RC64, RC256                   | Keras                                                                                                 | Yes     | Partially    |
| TVM                | Apache                    | See Devices   | Processors, GPUs, FP-GAs etc. | PyTorch (1.4, 1.7), TensorFlow (1.x, 2.x), MXNet, ONNX, Keras, TF Lite 2.1.0, CoreML, DarkNet, Caffe2 | Yes     | Yes          |
| Vitis              | Xilinx                    | FPGA IP       | Xilinx FPGAs                  | TensorFlow (1.15, 2.3), Caffe, Py-<br>Torch (1.2 - 1.4), Keras                                        | Yes     | Partially    |
| FINN               | Xilinx                    | HDL generator | Xilinx FPGAs                  | ONNX (Brevitas export)                                                                                | No      | Yes          |
| hls4ml             | Fast Machine Learning Lab | HDL generator | Xilinx FPGAs                  | Keras, TensorFlow, PyTorch, ONNX                                                                      | Yes     | Partially    |
| VectorBlox         | Microsemi                 | FPGA IP       | Microsemi FPGAs               | See OpenVINO frameworks                                                                               | No      | Partially    |
| Core Deep Learning | ASIC Design Services      | FPGA IP       | Microsemi FPGAs               | TensorFlow 1.14, Caffe                                                                                | No      | With license |

David Steenari | 16/06/2021 | Slide 21

+

#### 



### Survey of High-Performance Processors and FPGAs for On-Board Processing and Machine Learning Applications

# OBSERVATIONS AND CONCLUSIONS

David Steenari | 16/06/2021 | Slide 22

### **Observations Device Availability**



- Large gap in processing capabilities between RHBD/RT and COTS processors
  - Space processors are lagging behind commercial processors is terms of process node technology and performance
  - Mainly due to availability of COTS processors with hardware accelerators (DSPs, GPUs etc) that have not yet been provided in RT versions with qualified packages
  - ...and high cost of ultra deep sub-micron technologies
- However, process node usage in RHBD is (slowly) catching up to COTS equivalent
  - · But number of components are low, mainly driven by high manufacturing costs
- The use of high-performance COTS processors could cover coming high-performance requirements
- and potentially generate new mission concepts depending on higher performance on-board.
  - There are several candidates available -- but could compromise on mission lifetime, availability and reliability
- Lack of radiation data on several enabling COTS processors and accelerators
  - Need to carry out systematic radiation testing campaign, based on priorities
  - Radiation data availability included in the technical paper
  - COTS FPGA devices have mostly sufficient radiation data available and known mitigation techniques
- Need both high performance RHBD processors and qualified RT COTS for the future

### **Observations Machine Learning Tools Availability**



- High number of machine learning tools available
  - Driven by commercial interest for ground applications
  - Academic work on more efficient implementations
- Machine learning tools are already available for many FPGAs and processors used for space applications
  - Many COTS have mature inference engine tools
  - Co-processor IPs for qualified RT-FPGAs
  - HLS generators for RHBD- and RHBD FPGAs
  - Under development for RHBD processors

#### Conclusions

- High performance on-board processing needed for the future, to address needs, need both:
  - RHBD processors/FPGAs in deep sub-micron preferably with co-accelerators for processing
  - RT COTS in qualified packages
- Survey of RHBD, RT & COTS devices performance, radiation data and availability of ML tools presented
- Current study based on "peak performance" metrics, need to complement with real application benchmarks:
  - See OBPMark. List presented here: "wish list" for comparative benchmarks for classic processing and machine learning











"Survey of High-Performance Processors and FPGAs for On-Board Processing and Machine Learning Applications"

## THANK YOU FOR YOUR ATTENTION! QUESTIONS?

Contact: David.Steenari@esa.int

David Steenari | 16/06/2021 | Slide 26

### Industry view: Microchip





David Steenari | 16/06/2021 | Slide 27

\*

#### 

### Industry View: Teledyne e2v



|                              | CERAMIC                                       |                              |                      |                          |               |                          |                   |                   | PLASTIC           |                                                                                                                                                                   |               |                          |  |  |  |
|------------------------------|-----------------------------------------------|------------------------------|----------------------|--------------------------|---------------|--------------------------|-------------------|-------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------------------|--|--|--|
|                              | HERMETIC                                      |                              |                      |                          |               |                          | NON-HERMETIC      |                   |                   |                                                                                                                                                                   |               |                          |  |  |  |
| E\$CC 9000                   | QML-V QML-Q                                   | Enhanced                     | Standard             | QML-Y                    | •             | -Nx" NASA level          |                   | a.                | -Ex" EC\$\$ (     | Class                                                                                                                                                             | Enhance       | d Standard               |  |  |  |
| (wired)                      | (wired) (Filp Chip) (wired)                   | влт рлт                      | M, V, C              | (Flip Chip)              | Level 1       | Level 2 L                | evel 3            | Class 1           | Class 2           | Class 3                                                                                                                                                           | -EP           | M, V, C                  |  |  |  |
| ESCC 9000                    | MIL-PRF-38535 MIL-PRF-38535                   | INTERNAL PROCEDURE           | NTERNAL<br>PROCEDURE | MIL-PRF-38535            | EEE           | -INST-002 / PEM-INST-001 |                   |                   | EC88-Q-8T-80      | -13C                                                                                                                                                              | INTERNAL PROC | EDURE INTERNAL PROCEDURE |  |  |  |
|                              |                                               |                              |                      |                          |               |                          |                   |                   |                   |                                                                                                                                                                   |               |                          |  |  |  |
| Filp Chip die attach / cure  | Internal or Subcontractor procedure           |                              |                      |                          |               | $\odot$                  |                   |                   |                   |                                                                                                                                                                   |               |                          |  |  |  |
| Wre bonding                  | Internal or Subcontractor procedure           | $\langle \rangle$            | $\bigcirc$           |                          | S             |                          |                   |                   |                   |                                                                                                                                                                   |               |                          |  |  |  |
| SMD report / reflow          | Internal procedure / MIL-STD-883 TM 2030      |                              |                      |                          | _             |                          |                   | Internal or       |                   | infernal o                                                                                                                                                        | .             | Internal or              |  |  |  |
| Molding / Dam & Fill / Cure  | Internal or Subcontractor procedure           |                              |                      |                          | _             | n oppe                   |                   | Subcontractor     |                   | Subcontrac                                                                                                                                                        | or            | Subcontractor            |  |  |  |
| Solder balls report / reflow | Internal or Subcontractor procedure           |                              | Ifa                  | ppl.                     |               | If appl.                 |                   | procedure         |                   | procedure                                                                                                                                                         |               | procedure                |  |  |  |
| Internal Visual Inspection   | MIL-STD-883 TM2010 / ESCC 20400               | $\langle \checkmark \rangle$ | $\langle \rangle$    |                          |               | $\overline{\langle}$     |                   |                   |                   |                                                                                                                                                                   |               |                          |  |  |  |
| T-e2v Precap                 | MIL-STD-883 TM2010 / ESCC 20400               | $\langle \rangle$            |                      | 8                        |               | $\sim$                   |                   |                   |                   |                                                                                                                                                                   |               |                          |  |  |  |
| Heat sink attach             | Internal Procedure                            |                              |                      |                          |               | If appl.                 |                   |                   |                   |                                                                                                                                                                   |               |                          |  |  |  |
| Lid report / Sealing         | Internal Procedure                            | $\bigcirc$                   |                      |                          |               |                          |                   |                   |                   |                                                                                                                                                                   |               |                          |  |  |  |
| Stabilization                | MIL-STD-883 TM1008                            | $\bigcirc$                   | $\odot$              |                          |               |                          |                   |                   |                   |                                                                                                                                                                   |               |                          |  |  |  |
| PIND test                    | MIL-STD-883 TM2020 / A                        | $\bigcirc$                   | $\odot$              |                          |               | if appl.                 |                   |                   |                   |                                                                                                                                                                   |               |                          |  |  |  |
| Constant acceleration        | MIL-STD-883 TM2001 / E / Y1 orientation       | if appl.                     | if appl. If a        | ppi. If appi.            |               |                          |                   |                   |                   |                                                                                                                                                                   |               |                          |  |  |  |
| Incoming inspection          | Internal Procedure                            |                              |                      |                          |               |                          | lf appl.          | If appl.          | If appl.          | if appl. If appl.                                                                                                                                                 | If appl.      | lf appi. If appi.        |  |  |  |
| Marking                      | Internal or Subcontractor procedure           | $\bigcirc$                   |                      |                          | $\mathcal{O}$ | (                        | $\langle \rangle$ | $\langle \rangle$ | ()                | $\bigcirc \qquad \bigcirc \qquad$ |               |                          |  |  |  |
| Serialization Marking        | Internal procedure                            | $\bigcirc$                   |                      |                          |               | ()                       | ()                | $\odot$           | ()                | $\bigcirc$                                                                                                                                                        |               |                          |  |  |  |
| Temperature Cycling          | MIL-STD-883 TM1010 Cond B / +125°C / -55°C    |                              |                      |                          |               |                          | 20cy              | 20cy              | 20cy              | 10cy 10cy                                                                                                                                                         |               |                          |  |  |  |
| Temperature Cycling          | MIL-STD-883 TM1010 Cond C / +150°C / -65°C    | 10cy                         | 10cy 10              | cy 10cy 10cy             |               | 10cy                     |                   |                   |                   |                                                                                                                                                                   |               | 10cy                     |  |  |  |
| Xray Inspection              | MIL-STD-883 TM 2012                           |                              | $\odot$              |                          |               | lf appl.                 | $\langle \rangle$ | $\odot$           | $\langle \rangle$ | $\odot$                                                                                                                                                           |               |                          |  |  |  |
| C-SAM                        | Internal procedure / 1 view per Interface     |                              | Ifa                  | ppl.                     |               | lf appl.                 | ()                | ()                | ()                |                                                                                                                                                                   |               |                          |  |  |  |
| Pre-ambient electrical       | Per Device Specification (25°C)               | $\langle \rangle$            | ()                   |                          |               | $(\checkmark)$           | $(\checkmark)$    |                   | $(\checkmark)$    | $\bigcirc$ $\bigcirc$                                                                                                                                             | ()            |                          |  |  |  |
| Dynamic Burn-In              | MIL-STD-883, TM1015 cond. D (125°C)           | 240Hrs                       | 240Hrs 240           | Hrs 160Hrs 160Hrs 160Hrs |               | 240Hr8                   | 240Hr8            | 160Hrs            | 160Hr8            | 240Hrs 160Hrs                                                                                                                                                     |               | 160Hra                   |  |  |  |
| Intermediate-ambient Elect.  | Per Device Specification / +25°C              | $\bigotimes$                 |                      |                          |               | $\bigcirc$               | ()                |                   | $\bigcirc$        | $\bigcirc$ $\bigcirc$                                                                                                                                             |               | $\sim$                   |  |  |  |
| Static Burn-In               | MIL-STD-883 TM1015 cond. A or B or C (125°C)  |                              | 144Hrs 144           | Hrs                      |               | 144Hr8                   | 120Hr8            |                   |                   |                                                                                                                                                                   |               |                          |  |  |  |
| Post-Burn-In Electrical      | Per Device Specification / +25°C              |                              | ()                   |                          |               | $\bigcirc$               | $\langle \rangle$ |                   |                   |                                                                                                                                                                   |               |                          |  |  |  |
| Drift calculation            | Internal procedure / per Device Spec.         | $\langle \rangle$            | ()                   |                          |               | $\langle \rangle$        | ()                |                   |                   |                                                                                                                                                                   |               |                          |  |  |  |
| PDA                          | PDA (amb temp post Dyn.)                      | 5%                           | 5% 5                 | % 5% 5%                  |               | 5%                       | 5%                | 10%               | 10%               | 5% 5%                                                                                                                                                             | 5%            | 5%                       |  |  |  |
| PDA                          | 3% functional parameters (amb temp post Dyn.) |                              | (v) (v               |                          |               | $(\checkmark)$           |                   |                   |                   |                                                                                                                                                                   |               |                          |  |  |  |

David Steenari | 16/06/2021 | Slide 28

+