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Machine Learning for Space Applications

Dramatic advancements in Artificial Intelligence (AI), Machine 

Learning (ML) and Deep Learning (DL) capabilities are 

disrupting many industries.

AI/ML/DL being targeted for Space across multiple areas:

 Computer Vision (e.g., cloud detection, earth observation, weather 
intelligence, docking/landing assist, etc.), 

 Robotics (e.g., autonomous systems), 

 Diagnostics and Predictive Maintenance (e.g., anomaly detection),

 Communications (e.g., RF link optimization), 

 Flight Control (e.g., space debris avoidance),

 Planning and Scheduling, 

 Scientific Analysis

Industry Push to Scale Terrestrial AI & ML Capabilities to Space-based Platforms 

Cloud Detection

(Craft Prospect, Ltd.) [1]

Object Detection in 

Satellite Imagery [2]

ML-aided Docking Assist [3]
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FPGAs for Space-based Deep Learning Inference

(a) Convolutional layers dominate total compute requirements 

in CNNs. (Table shows unpruned GOPS.)

Comparison of CNN Compute and Memory Costs. Source: A. Canziani, et al, 2017. 

https://arxiv.org/abs/1605.07678 [4]  

For ResNet-50 (unpruned):

70 layers, ~7.7 GOPS, ~36 MB static storage (INT8)

(b) RT XQRKU060 Device (20nm) features [6].

➢ 2760 DSP48E2 Slices: Multi-precision 

fixed and floating point modes

➢ 32 High Speed SERDES (12.5Gbps): 

400Gbps aggregate BW

➢ Radiation Tolerance across all orbits: 

TID >100 Krad/si, 

SEL >80 MeV-cm2/mg

➢ 40x40 mm Ceramic Column Grid Array 

Packaging

➢ Class B, Class Y (QML-B, QML-Y 

Equivalent)

(c) Theoretical peak compute comparison (DSP Slice-bound) 

between recent Xilinx Space-grade FPGAs.* 

25X

RT XQRKU060 is a Viable Target for High Performance CNN Inference in Space…Now Let’s Develop a Platform

CNNs Require Lots of Compute and Memory:

RT XQRKU060 

Space-grade FPGA is radiation-

tolerant with high compute 

density suitable to DL

5.7 TOPs

*Assumes DSP Fmax in -1 Speed Grade (360 MHz @ 

65nm; 594 MHz @ 20nm) [6]. 3.5 OPS/Clock/Slice [7].4

https://arxiv.org/abs/1605.07678
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Host CPU

Application/

Supervisor 

Processor

Space DPU Platform: Design & Architecture Criteria

AXI Interconnect

Optional:

High-Speed System 

Connectivity for Sensor, 

Comms, Scientific Payloads

(Up to 400Gbit/s)

ML

Pre-

Processing

Soft Error 

Management &

Test Injection

ML

Post-

Processing

Standard

Peripherals

High Speed

I/O
Memory

Controller

Neural Network

Inference 

Engine

Required:

Boot, Networking, 

UART, GPIO, 

Debug, etc.

Optional (PL Offload):

Color Space Conversion, 

Cropping, Tiling, Norm, 

NMS, etc.

Required:

External Mem for: 

Model Weights & Activations, 

Data Buffering, Host OS 

RT KU060 FPGA 

Required:

Efficient tensor processing 

mapped to 20nm FPGA. 

Many options: FINN, DPU, 

HLS4ML (Dataflow, 

systolic, etc.)

Required:

Direct compilation from 

standard ML frameworks 

(Caffe. TF, PyTorch, etc.)

DRAM

Dynamically 

Reconfigurable Regions via DFX 

(Optional)

Desired: Leverage Free IP

Desired: 

> 1 TOPs

Space DPU Platform Implements a Domain Specific Architecture for Radiation/Fault-Tolerant CNN Inference on XQRKU060 

Required: 

Integrated Fault Tolerance and Error Management

Implemented on Current Platform
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Space DPU Platform: Key Components

+ +

Neural Network  Inference Acceleration

(non-TMR)

Model-level Fault Tolerance

(Adds Datapath Resiliency)

Xilinx DPU

High-performance Deep Learning Processing Unit 

(tensor processor) optimized for INT8 precision; 

DPUCZDX8G ported to 20nm Kintex UltraScale. 

Programmable with Vitis AI. Open source runtime.

Probabilistic injection with ad-hoc layer in 

training framework. Extensible to a variety of 

architectures and fault models. Increases 

datapath resiliency to errors induced by SEUs.

Fault Aware Training (FAT)

Control Plane Fault Tolerance & 

Device-wide Soft Error Mitigation

Xilinx TMR MicroBlaze Subsystem

Fault Tolerant - Fail Safe (FT-FS) application 

processor. Bare-metal / Rich OS support. 

Integrates Xilinx SEM IP for fast, device-wide 

background scrubbing (detect/correct soft errors).

RT XQRKU060 

Space-grade Device

Example: Xilinx 

KCU105 Evaluation Kit

(XCKU040 Device)

Scalable/portable platform components to 

various hardware targets

Deployment 

(Custom Platform)

Development & Prototyping

(Eval Kits & COTS  Boards)

Ref: [8][9] Ref: [5] Ref: [10] 
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Xilinx DPU: Anatomy & Configuration DPU Architecture: The CNN DPU leverages DSP Slices for compute 

acceleration within an array of Processing Elements (PEs). Precision 

is INT8.  SPFP32 models are quantized with Vitis AI tools [8] [9].

AXI Interconnect

Scheduler

Instruction 

Fetch Unit

PE …

Conv Engine

PE PE

PE …PE PE

PE …PE PE

DWCV Engine

Element-

Wise 

Engine

Pooling

Engine

Softmax

ReLU
Global Memory Pool

CNN DPU

Host CPU

(TMR MB)

DRAM (OS Memory, Model Weights/Activations, Application Needs, etc.) 

CNN-enabled Applications

Co-processor / Accelerated Layers & Operations Vitis AI Runtime (VART) Stack
Fully Open Source

Xilinx DPU is a family of highly-configurable, efficient tensor co-processors scalable to FPGA, SoC, ACAP and Alveo platforms.

Key aspects of VART stack optimized for MicroBlaze-

based Space DPU Platform.

Space DPU Performance on KCU105 Board: 1.43 TOPs*
ResNet-18: ~70 FPS, Tiny-YOLOv2: ~38 FPS

*Peak TOPs with DPUCZDX8G (single 

instance), B4096 @ 350 MHz
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Fault Aware Training (FAT)
Xilinx Research Labs

 Main Idea: Hardware Errors (e.g., SEU-induced faults) can 

be modelled during training and tailored to the chosen 

hardware inference engine (e.g., DPU)

 Probabilistic injection with ad-hoc layer in training framework -> 
FAT: Fault Aware Training [5]

 No increase in training time nor hardware cost

 Provides significant increase in minimum accuracy under stuck@ 
error models

 No compromise in error-free accuracy

 Error-free accuracy improved in all of our experiments

 FAT has been tested on a variety of topology/dataset/precisions

FAT is a Training Time Method for Improving Fault Tolerance of Neural Networks Without Added Hardware Cost

(a) FAT Concept: PyTorch-developed error injection 

layer allows injecting errors with a particular error 

model during training. Forward and backward pass of 

injection layer shown. Errors are injected with a 

global probability p, which is a hyper-parameter. [5]

Channel s@0

p=1%

(b) FAT Implementation for Space DPU Testing:

During training, after every activation function is 

computed, random channels in the output feature 

map (OFM) are set to zero, with a probability of 1%. 

FAT = Fault Aware Training

SAT = Standard Training (no fault model)

Terminology:

[5] U. Zahid, G. Gambardella, N. J. Fraser, M. Blott, and K. Vissers, “FAT: Training Neural Networks for Reliable 

Inference Under Hardware Faults,” arXiv:2011.05873 [cs], Nov. 2020, Available: http://arxiv.org/abs/2011.05873
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Space DPU Platform: Putting It All Together
FPGA Implementation

“As Is” Placement Derived from Vivado 2019.2 Defaults; Design Has Room to Grow, Particularly in KU060

(a) FPGA Implemented Device View 

(KU040 on KCU105).  Placement of DPU 

and TMR MicroBlaze subsystem is 

highlighted.

TMR MicroBlaze Sub-system

DPU Instance

(b) TMR Subsystem Block Diagram as constructed in Vivado IP 

Integrator.  (DPU is one level of hierarchy above TMR Subsystem, along 

with other peripherals.)

Other logic

(c) Actual FPGA resource utilization for overall design 

implemented in the KU040 device (KCU105 board) 

compared against projected utilization in the larger, 

Space-grade XQRKU060 device. 

MicroBlaze Instances
TMR VotersSoft Error Mitigation 

(SEM) Controller IP

DPU Resource Utilization: ~58k LUTs, ~105k FFs, 261 BRAMs, 704 DSP Slices

KU040 Utilization (%) – Actual (KCU105 Board)

RT XQRKU060 Utilization (%) – Projected 
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Experiment and Results
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Beam Test Experiment Configuration

 Beam

 >64 MeV protons beam test

 Platform

 TMR MicroBlaze @ 175 MHz; Linux kernel 4.9 (Petalinux)

 Single DPUCZDX8G instance (B4096) @ 350 MHz

 “Ground-up” build in Vivado IPI (2019.2)

 Simplified XRT + Vitis AI 1.2 Runtime (VART)

 Models

 ResNet-18 (Image Classification)

 ~3.65 GOPS

 SAT and FAT Models; Compiled/quantized with Vitis AI

 Tiny-YOLOv2 (Object Detection)

 ~7 GOPS

 SAT Model only; Darknet model converted then quantized with Vitis AI

 Dataset(s) & Image Preparation

 ILSVRC2012 (ResNet-18)

 224x224 crops; mean-centered (pre-processed offline)

 Pascal VOC 2012 (Tiny-YOLOv2)

 416x416 crops; mean-centered (pre-processed offline)

Objective: Deploy Space DPU Platform in Emulated Space Env.; Characterize Effectiveness of Fault Mitigations

(a) Board Platform for Beam Test: Xilinx KCU105 Eval Kit with 

XCKU040 Kintex UltraScale FPGA. 
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Test Methodology (ResNet-18)

(b) Kintex XCKU040 

DUT mounted on Xilinx 

KCU105 test board 

during proton beam 

testing at Crocker 

Nuclear Lab (CNL).

Background Scrubbing: 

SEM IP with correction and essential bit classification 

enabled. Detects and corrects soft errors occurring in 

configuration RAM.

TMR Subsystem Fault Management: 

TMR Manager implements voting and fault monitoring 

of TMR MB Subsystem internal state. After first failure, 

moves to lockstep mode.

SAT Model 

Executes on 

DPU

FAT Model 

Executes on 

DPU

Baseline Configuration (All Tests)

Run-specific Testing (A/B)

(a) Example image from validation dataset 

(prior to pre-processing)

(not displayed during test script execution)

============================================
Load image : ILSVRC2012_test_00083589
Iteration 1 of 10
Fri Aug 07 13:02:36 2020
Start @  1462218218.49011
top[0] prob = 0.998448 name = radio telescope, radio reflector
top[1] prob = 0.001501 name = solar dish, solar collector, solar furnace
top[2] prob = 0.000027 name = analog clock
top[3] prob = 0.000005 name = sundial
top[4] prob = 0.000004 name = airship, dirigible
End @ 1462218218.59011

Example Classification Output Logging

Top-5 Model Class 

Predictions and 

Probabilities Captured 

for Each Test Image

Top-1 Probability Top-1 Class Prediction

>500 CRAM soft errors 

Detected and Corrected 

Using UltraScale SEM IP for 

each collective group of SAT 

and FAT Test Runs.

Experiment Design
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Observed Error Types: Accuracy
ResNet-18

Example: Incorrect Classification
(Accuracy Degradation vs. Error-free Model)

komondor (sheep dog) (87.71%)

Soft Errors Can Induce Faults That Reduce Prediction Accuracy; FAT Shows Meaningfully Better Fault Tolerance vs. SAT

Top-1 Error-free Prediction Top-1 Actual Prediction Under Beam 

(Error)

Note: Images are for illustration; actual images were cropped to 224x224 

and mean-centered prior to model training and classification

window shade (61.65%)

Image: ILSVRC2012_val_00000383

Model: resnet-18 (SAT)

94.4% 97.8%

SAT Model FAT Model

+3.4% Accuracy Improvement vs. SAT

>50% Error Reduction

-5.56% 

Degradation

-2.20% 

Degradation

Overall Results (Beam Test): Top-1 Accuracy
(Ground Truth = Error-free Predictions)

Can Be False Positive 

or False Negative
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Observed Error Types: Certainty
ResNet-18

Example: Probability Error
(Certainty Degradation vs. Error-free Model)

water ouzel, dipper (95.76%)

Soft Errors Can Induce Faults That Reduce Prediction Certainty; FAT Shows Meaningfully Lower Probability Error vs. SAT

Top-1 Error-free Prediction Top-1 Actual Prediction Under Beam 
(Correct Classification, Different Probability)

Note: Images are for illustration; actual images were cropped to 224x224 

and mean-centered prior to model training and classification

water ouzel, dipper (74.71%)

Image: ILSVRC2012_val_00024059

Model: resnet-18 (SAT)

SAT Model

FAT Model

Overall Results (Beam Test): 

Top-1 Probability Error
(Correct Class, Different Probability)

Primary concern is False 

Negatives due to probability 

degradation…but False 

Positives also possible

Mean Error = 12.58%, σ = 10.07%, IQR = 19.69%  

Mean Error = 1.56%, σ = 0.84%, IQR = 1.21% 

(FAT Exhibits >10X Lower Error Dispersion)

6.7% of correct 

predictions exhibit prob. 

errors

7.9% of correct 

predictions exhibit 

prob. errors
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Statistical Analysis: Summarized Results from Beam Test (ResNet-18)

Standard

Training

(SAT)

Fault 

Aware 

Training

(FAT)

Fault Aware Trained Model Exhibits Superior Classification Accuracy and Lower Probability Error Under Beam-Induced Faults

Top-1 Accuracy*
(Ground Truth = Error-free Predictions)

94.4%

97.8%

*Ground Truth Reference = 100% (ResNet-

18 Model Predictions for Test Images in 

Non-Irradiated Environment, aka., Error-free 

Predictions) 

SAT Model Probability Errors

Mean Error = 12.58%, σ = 10.07%, IQR = 19.69%  

FAT Model Probability Errors

Mean Error = 1.56%, σ = 0.84%, IQR = 1.21%  

Top-1 Certainty (Probability Errors) 
(Correct Class, Different Probability)

SAT Model Probability Error Plot

FAT Model Probability Error Plot

(>10X Lower Error Dispersion vs. SAT)

Detailed SEU/SEFI 

analysis forthcoming 

(IEEE).
6.7% of correct predictions exhibit 

prob. errors

7.9% of correct predictions exhibit 

prob. errors

+3.4% Accuracy Improvement vs. SAT

>50% Class Error Reduction
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Summary

❖ “Space DPU” Platform is a viable base architecture 

for radiation-tolerant deep learning on Xilinx 20nm 

FPGAs in Space environments

✓ Key Components are Freely Available (DPU, Vitis AI, TMR 
MicroBlaze)

❖ Architecture is extensible between different targets 

for development and deployment

❖ Fault Aware Training (FAT) meaningfully reduces 

neural network misclassifications and probability 

degradation in presence of SEU-induced faults 

without adding hardware cost or complexity

✓ Broadly-applicable technique scalable across a variety of
DNNs and hardware backends

- Multiple Improvements Being Considered:

- Mainstream Vitis / Vitis AI support for “Space DPU”

- Acceleration-enabled platform(s)

- Error Mitigation enhancements

- What Else Would You Like to See?  Let us know…

Key Take-aways What’s Next?
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