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ABSTRACT 

Next generation space missions will require more 

capable computers  in order to implement either 

advanced navigation and control algorithms needed to 

increase the spacecraft autonomy and agility or on the 

payload side with complex scientific payload data pre-

processing algorithms. The advent of low-power multi- 

and many-cores processor architectures provides critical 

real-time embedded systems with an unprecedented 

performance level, opening the door to implement more 

intelligent systems. These architectures however, 

pressure the software development process, as 

applications must be parallelised in order to exploit the 

huge performance capabilities they offer. 

The complexity of parallel programming has already 

been identified as a major challenge in general purpose 

computing, and it is now exacerbated in the critical 

embedded systems domain, due to the non-functional 

properties that these systems must fulfilled, e.g. 

functional safety and time predictability. 

The majority of architectures incorporate parallel 

programming models in their software development kits 

with the objective of easing programmability and 

exploiting performance capabilities. These models 

provide an interface that entails a level of abstraction 

enabling to expose parallelism while hiding the 

complexity of the processor architecture. Parallelism is 

accomplished by the definition of independent 

execution units and synchronization mechanisms that 

guarantee the correct control- and data-flow. 

The decision on what parallel programming model is 

used directly affects portability. While high level 

models can be compiled and executed on different 

architectures supporting the same model without 

modifying the application, low level APIs (e.g. 

Pthreads) may require some tuning before they can be 

ported to another machine. 

Overall, parallel programming models are a 

fundamental element to exploit the huge performance 

capabilities offered by the newest parallel 

heterogeneous architectures. 

The purpose of this study is to demonstrate the benefits 

of using one of the most well-known parallel 

programming models, i.e. OpenMP, for the 

development of parallel space applications, in terms of 

performance, programmability and portability. 

Two main goals are identified: 

 Improve overall system performance by exploiting 

the most advanced parallel embedded architectures 

targeting the space domain 

 Improve the parallel programming productivity by 

reducing  the initial development efforts of systems 

based on parallel architectures,  

By selecting and porting  two representative payload 

processing use cases to OpenMP parallel programming 

model,  and evaluating their deployment on two high-

end computing devices, GR740 in the radiation 

hardened components family and latest Kalray Coolidge 

MPPA as COTS, the project execution successfully 

demonstrated that usage of OpenMP parallel 

programming could facilitate the development, and 

analysis of parallel real-time space applications. 

Development framework is completely based on open 

source solutions. Cross compiler for the selected targets 

is mainstream GNU GCC and includes OpenMP 4.5 

runtime and open source observability tools provided by 

Barcelona Supercomputing Center (Paraver and Extrae) 

were ported from HPC mainstream to the selected 

hardware targets, and exercised through the selected 

software use cases. 

1. PREPARATORY PHASE 

The preparatory phased purpose was to refine and 

summarize the actual needs, analyse the potential 

software solutions and associated challenges to build a 

solid plan for prototyping and evaluation on relevant 

targets.  

1.1. System Needs and perspective for use of 

OpenMP 

There are typically two different categories of on-board 

data processing platforms in spacecraft. Some 

computers are responsible for spacecraft or instrument 

control; others are responsible for the on-board 

processing of instruments data, more often located on 

the Payload segment. 

For both categories, we foresee that next generation 

space missions will require more capable computers, 

with respect to what we can implement today using 

proven technologies like the LEON processor. On the 

control side, spacecraft autonomy and agility need to be 

improved thanks to new sensors data acquisition and 

processing for in-situ real-time usage, such as for 

instance visual based navigation. On the payload side, 

scientific data pre-processing algorithms as well as 

more robotics for in-orbit/on-Planet operations are 



 

foreseen with, in the long term, the foreseeable usage of 

artificial intelligence. 

Two tracks are identified by Airbus Defence and space, 

largely shared with other European space Industrial for 

achieving such goal, and supported by the technology 

roadmap of the European Space Agency and national 

agencies:  

 The development of new processing architectures 

on new rad-hard technologies such as, among 

others, the recent GR740 and HPDP with the STM-

65nm and the future Dahlia/Brave-Ultra targeted 

for the new STM 28nm FD-SOI provide higher 

running frequencies with more efficient processing 

devices. On this technology track, developments of 

High performance computers are on-going which 

all require the capability to efficiently develop 

software on Multi-Core devices. 

 The development of mitigation techniques enabling 

the use of commercial of the shelves processors 

(COTS) both as FPGA and micro-processors in the 

space environment. This way has been supported 

and matured through the ESA “COTS Based 

Computers” studies in which Airbus Defence and 

Space was strongly involved. For instance, this 

track which is more easily applicable for the LEO 

orbit has enabled the new Airbus product line 

“PureLine” based on automotive quality grade 

parts. 

In this context, the emergence of complex computing 

architecture embedding many processing cores on single 

device is a real opportunity to drastically increase the 

on-board processing capability for both of these 

technology development tracks. 

A wide range of devices are relevant for satisfying these 

needs: 

 FPGAs (Field-Programmable Gate Arrays) use 

configurable logic blocks and implement a wide 

range of applications. They tend to outperform with 

streamed algorithms. 

 DSPs (Digital Signal Processors) are optimized for 

single thread signal processing applications which 

mainly use typical signal processing operations. 

DSPs tend to perform these operations using fewer 

instructions than GPPs, and with lower power 

consumption. Some DSPs have a SIMD (Single 

Instruction, Multiple Data) architecture giving them 

Data Level Parallelism (DLP) capabilities. 

 GP GPUs (General Purpose Graphics Processing 

Units) There is a wide variety of GPU architectures, 

but they usually consist of up to 32 cores, with each 

core containing up to hundreds of processing units. 

The cores have their own instruction stream and the 

same stream is shared by the processing units of a 

core. The cores have a private, local memory and 

they communicate through the GPU shared 

memory. 

 Many-core processors are designed to reach high 

throughputs using Thread Level Parallelism (TLP). 

Usually, the cores are quite small in order to fit a 

high number of them on a chip with reasonable 

power consumption. 

 Multi-core GPPs (General Purpose Processors) 

outperform in single-threaded applications and 

mostly take advantage of ILP (Instruction Level 

Parallelism) thanks to complex pipelined and 

superscalar architectures. This parallelization is 

implicit since it is automatically managed by the 

hardware. GPPs rely on cache memories to reduce 

the latency of memory transfers. Multi-core 

architectures make it possible to run some threads 

in parallel. 

Some systems use a combination of devices to 

implement the overall application. To choose the most 

suitable hardware solution for a specific algorithm, 

several items such as cost, speed, flexibility, power and 

optimization as well as the design environment (team’s 

skill, design tools, licensing…) should be taken into 

account. 

The complexity of parallel programming has already 

been identified as a major challenge in general purpose 

computing, and it is now exacerbated in the critical 

embedded systems domain, due to the non-functional 

properties that these systems must fulfil, e.g. functional 

safety and time predictability. 

OS’s and RTOS’s already provide all the services 

required to designing a parallel application. 

Nonetheless, reaching a high level of parallelism by 

only using the services of the OS is hard as it requires 

finding a good balance between the loads of the 

different cores with very rudimentary tools. 

The majority of architectures incorporate parallel 

programming models in their software development kits 

with the objective of easing programmability and 

exploiting performance capabilities. These models 

provide an interface that entails a level of abstraction 

enabling to expose parallelism while hiding the 

complexity of both the processor architecture and the 

OS.  

OpenMP presents the following advantages over its 

competitors: 

 Different evaluations demonstrate that OpenMP 

delivers performance and efficiency tantamount to 

highly tunable models such as TBB, CUDA, 

OpenCL, and MPI. Regarding low-level libraries 

such as Pthreads, it offers multiples advantages 

such as: a) robustness without sacrificing 

performance, and b) OpenMP does not lock the 

software to a specific number of threads.  

 The code can be compiled as a single-threaded 

application by either disabling support for OpenMP 

or assigned a single computing unit (i.e., OpenMP 

thread), thus easing debugging. 



 

 OpenMP has a large and experienced community 

that has constantly reviewed and augmented the 

language for the past 20 years achieving great 

expressiveness. OpenMP is the de-facto shared-

memory programming model standard. The 

language defines a very powerful tasking model 

that allows expressing fine-grained, both regular 

and irregular, and highly-dynamic task parallelism, 

augmented with features to express task 

dependencies. The latest specification of OpenMP 

also incorporates new features that facilitate the 

coupling of a main host processor to accelerator 

devices by defining both synchronous and 

asynchronous communication between them. 

 OpenMP is widely implemented by several chip 

and compiler vendors (e.g. GNU, Intel, IBM, 

Kalray, Texas Instruments). Typically, ensuring 

functional correctness in languages that are not 

developed for such purpose is not straightforward. 

Nonetheless, OpenMP static correctness techniques 

are quite mature and simple compared to other 

parallel programming models which are not 

designed with correctness in mind (e.g. the low 

level Pthreads API or the Message Passing 

Interface, MPI). 

Overall, OpenMP is a good candidate to be used in the 

real-time embedded domain in general, and in the space 

domain specifically by virtue of its benefits. 

1.2. Evaluation Plan 

Based on the definition of those requirements, a work 

plan for applicability of OpenMP on different targets 

was established, so as to answer the project goals 

objectives and provide crucial pieces of information 

amongst which: 

 a measurable view of the performance of high 

demanding algorithms with two different multiple 

cores targets using an OpenMP implementation  

 feedback and experience on the efficiency of 

OpenMP to parallelize application  

 some practical view on the portability offered by 

the OpenMP framework 

A set of criteria was defined and applied to select 

software and hardware to be exercised.  

1.3. Use Case: HRGEO 

Correlation ResamplingImage sensor Output image

Estimated shift

Fusion Stabilisation

Reference image

 

The complete algorithm is divided into several 

computation stages. The sensor image is a RGB image 

with the three composites values for each pixel (no 

bayering is considered here).  

The algorithm includes image registration, resampling 

and fusion. The goal of the algorithm is to improve the 

S/N ratio on a static image by merging multiple images 

from a stream coming out of a more or less steady 

camera. The algorithm creates and manages a geometric 

model which fits the image displacement. It 

accumulates the successive images into a single 

reference image after compensating for the 

displacement with sub-pixel accuracy. 

The implementation uses fixed-point representation for 

image correlation and keeps only a few operations in 

double precision. 

1.4. Use Case: Adaptive Mirror 

Future earth observation satellites with high resolution 

requirements will need primary mirrors of huge size. 

Due to their big size, they will suffer thermoelastic 

deformations. Adaptive optics allows fixing these 

defaults thanks to a deformable mirror actuated by a 

myriad of piezo actuators. The wave front defaults are 

measured on board by a Shack-Hartmann analyzer with 

its image sensor. Wavefront sensors aim at analyzing 

the shape of an incident beam's wavefront in order to 

identify aberrations caused by light traveling through 

individual optics or optical assemblies.  

The algorithm is composed of two steps. It is applied on 

a 12x12 matrix of lenses for 3 detectors that are 

independent. But not all lenses must be processed, only 

the ones with a light intensity above a certain threshold. 

The light intensity is a constant, thus the number of 

lenses to be processed can be defined beforehand. 104 

lenses have to be processed in the current 

implementation.  

 

 
As illustrated in above, the image processing partition is 

composed of two parts: one that computes a first rough 

estimate of the shifts and interpolates the image with 

this shift; and another one that uses the interpolated 

image to compute a very precise shift.  

1.5.  Hardware Targets Selection 

Based on a set of criteria not detailed in this public 

report on purpose, two hardware targets were selected 

amongst the following candidates { GR740, HPDP, 

RC64 } for the radiation hardened targets and { Zynq, 

Zynq MPSoC, Kalray Coolidge MPPA } for the COTS 

ones.  



 

The GR740, the Coolidge and the Zynq 

7000/UltraScale+ appeared to be the targets the best 

suited to the HP4S study. This is mostly because they 

implement hardware cache coherency mechanisms, they 

support SMP and their software stack is based on open-

source tools. On the other hand, the other two targets 

that are considered (the RC64 and the HPDP) have 

software stacks based on proprietary tools and a high 

effort would be required to implement a reduced 

OpenMP runtime on these targets.  

Final selected ones are GR740 and MPPA Coolidge.  

 

2. IMPLEMENTATION PHASE 

2.1. Use case software porting to OpenMP 

methodology 

The implementation was divided into two stages for this 

study: 

 Porting for first sequential execution on the targets. 

 Parallelization of the applications with OpenMP 

(low optimization effort). 

The sequential version of application serves as a 

reference for the considered evaluation metrics, such as 

memory occupation and of course execution time 

performance speed up with the parallelized version.  

A single parallel implementation is performed for each 

use-case and the efficiency of this implementation is 

evaluated on the different targets to evaluate portability 

capabilities of OpenMP. 

The methodology followed to parallelize the use-cases 

is presented below: 

2.2. Identifying the hotspots of the algorithm 

The hotspots can be identified by theoretical analysis of 

the algorithm or empirically, by profiling the sequential 

program. Initial measurements and profiling executed 

on x86_64 benefited from standard HPC tools through 

GNU gprof  x86_64 and Intel VTune Analyzer.  

This allowed selecting the main functions to parallelize 

for each use case, yielding 99.8% of the sequential 

execution time for HRGEO application and 90% for the 

adaptive mirror one.  

2.3.  Choosing an appropriate parallelization 

strategy for each hotspot 

Selecting a parallelization strategy consists in 

identifying the appropriate type of parallelism and the 

appropriate OpenMP constructs to implement it. With a 

good parallelization strategy, it is possible to achieve 

high performance with minor modifications to the serial 

code. 

The different types of parallelism are: 

 Data parallelism, where each thread executes the 

same task on different sets of data. 

 Task parallelism, where each thread executes a 

different task. This can be used to parallelize 

recursive algorithms or to create pipelines. 

Both data and task parallelism can be implemented with 

different OpenMP constructs: 

 Worksharing constructs: The work is divided into 

work items which are distributed over a team of 

threads, either statically or dynamically. 

 Tasking constructs: Although writing task-parallel 

programs with worksharing constructs is possible, it 

is often inconvenient. Tasking constructs have been 

introduced to provide a convenient syntax and more 

flexibility for task parallelism.  

To summarize, worksharing constructs are suited to data 

parallelism (do/for loop constructs) while tasking 

constructs implement task and data parallelism more 

conveniently and with more flexibility.  

The synchronization and data management clauses are 

applied to the different worksharing and tasking 

constructs. Synchronization points can also be added at 

specific points of the program. 

2.4. Investigating the potential issues when the 

targeted acceleration is not met 

The following points can be responsible for low 

performances: 

 Poor memory accesses due to an inefficient use of 

cache memory. To maximize the cache efficiency, 

each thread should be able to work on independent 

sets of data and the cache spatial and temporal 

locality principles should be taken into account. 

Achieving this may require source code 

modifications. 

 Overhead due to synchronization, scheduling or 

context switching. Several solutions not detailed 

here can be considered depending on the origin of 

the overhead. 

 Unbalanced workload across threads. Several 

solutions not detailed here can be considered 

depending on the origin of the unbalance. 

2.5. Porting observability tools 

Compilation tool chain already support OpenMP 4.5 on 

both targets through RCC 1.3-rc6 and ACE SDK 4.1.0 

respectively on GR740 and Kalray Coolidge targets.  

There are two main additional tools used during this 

evaluation: Extrae which is used to instrument code and 

Paraver which displays the data collected by Extrae. 

Both have been developed and are maintained as open-

source project by the Barcelona Supercomputing Centre 

(BSC). Extrae is a rich tool which takes advantages of 

reusing packages from others developers’ community.  

It supports natively CUDA, OpenCL and OpenMP 

environments. In its basic version it allows to measure 

time and the number of instructions executed. To get 

memory usage information (which could be very 

interesting for optimization) then the PAPI library 

should be used. PAPI provides a consistent interface 

and methodology for use of the performance counter 

hardware found in most major microprocessors but the 



 

usage of this library requires a lot of re-compilation, 

including the kernel.   

Extrae uses an XML configuration file at runtime. This 

configuration file is used to enable or disable some 

profiling features, and to set some parameters. Once the 

program has been executed, the profiling data can be 

displayed and analysed with Paraver.  

Extrae adaptation to the embedded targets consisted in 

replacing some of the techniques applied on regular 

HPC context to comply with the embedded constraints. 

Ported extrae intends to keep benefiting from all the 

features of the HPC mainstream version; however ports 

realized during this study present some limitations due 

to their alpha version and bounded effort. One of the 

main changes is related to automatic instrumentation. 

Originally based on the LD_PRELOAD dynamic calls 

interception at runtime, it had to be adapted for 

embedded targets using symbol wrapping at compile 

time using linker flags, as illustrated in following 

Figure. 

  

 
 

Another modification lies in the hardware counter 

gathering process originally based on PAPI library. 

While PAPI library is natively available on Kalray 

Coolidge MPPA, hardware counters function was 

enhanced to also benefit from GR740 L4STAT 

counters, through L4STAT driver.  

 

3. Evaluation Phase 

3.1. GR740 Test setup 
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As illustrated in Figure above, the test setup is mainly 

composed of a GR-CPCI-GR740 Quad-Core LEON4FT 

Development Board, connected to a Linux host 

development machine. 

I/Os consist of input data file either directly linked with 

the application or retrieved from development host 

through NFS over a 1Gbps Ethernet link. This NFS 

share is also used to retrieve both functional and 

instrumentation outputs. 

The software stack on the development host is 

composed of RCC 1.3-rc6, grmon Pro 2.0.98, nfs-

kernel-service, BSC Paraver, version 4.8.1.  

The software stack on the embedded platform is 

composed of RTEMS 5 SMP, Actual Use Case 

algorithm linked, OpenMP 4.5 runtime, Extrae 3.7.1 

instrumentation library from BSC ported to GR740 

3.2. KALRAY TEST SETUP 

The Kalray test setup is based on the MPPA® DEV4 

workstation which is a complete X86 – MPPA® based 

environment, packaged with Kalray S/W, for easy 

benchmarking and development of accelerated systems.  

 
 

This development is composed of a x86_64 host part 

running a standard Linux distribution and a KONIC200 

PCIe Programmable accelerator card, hosting the 

Coolidge MPPA device. 

Two modes of operation were exploited during the 

study. The first one is the JTAG mode on single cluster. 

It consists on the generation of a standalone executable 

intended to be run and parallelized on a single cluster on 

top of the Kalray Cluster OS.  Deployment of the 

executable on target relies a JTAG link with PCIe 

acceleration for executable or binary blobs transfer 

to/from MPPA® Coolidge target. The JTAG mode also 

offer semi-hosting capabilities allowing to access host 

file system through regular file manipulation calls, with 

inherent  

Second mode of operation explored is OpenCL 

offloading where the Coolidge  manycore is considered 

as an accelerator.  The kernels that will run in the 

accelerator must be compiled in isolation with the 

OpenCL compiler, and then linked with the host 

application part. All the communication is done through 

PCIe.  

The software stack on the host platform is composed of 

Kalray SDK ACE 4.1.0, based on gcc 7.5.0, and same 

x86 4.8.1 Paraver version than the one used for GR740.  

On the embedded part the stack is composed of 

ClusterOS, which is a light OS optimized for MPPA® 

cluster, with openMP 4.5 supports and multithreading 



 

support through pThread POSIX, as well as a port of 

Extrae 3.7.1 to the Coolidge architecture. 

3.3. Test Scenario  

Test scenario for both HRGEO and MIRROR use cases 

execution on target follows an incremental approach.  

First the algorithm is executed in its pure sequential 

form to obtain a reference baseline.  

Then algorithm is executed with OpenMP runtime 

integrated but only 1 core mainly to measure open MP 

overhead in terms executable size overhead and 

execution time overhead. 

Then the number of exploited cores is incrementally 

increased to measure actual multicore performance gain 

thanks to parallelization. 

Finally OpenMP Extrae is integrated on the scenario 

with the maximum number of cores active to check the 

observability mechanism and verify proper and efficient 

parallelization of the code. 

For each of those tests functional correctness of 

parallelized code is verified by comparing outputs 

against expected ones for the predefined set of inputs.  

3.4. Quantitative metrics  

The figure of merit is used to detect an unbalanced 

workload across threads for parallelized software 

sections: 

durationtotal

durationtask
FOM

_

_
  

The FOM is 1 for a single core processor because all 

tasks are executed sequentially. The FOM is N for a 

perfectly balanced workload across N cores 

The theoretical total speed-up achieved by parallelizing 

the hotspots is provided by Amdhal’s criteria and it has 

to be taken into account when selecting the hotspots to 

be parallelized. 
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parallel
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 S_N is the theoretical speed-up of the whole 

program with N cores. 

 F_parallel is the fraction of time consumed by the 

regions considered for parallelization. 

 F_sequential is the fraction of time consumed by 

the sequential regions 

3.5. Speed Up 

This section presents the measure figure of merit for 

each individual parallelized loop as well as the overall 

total algorithm time speed up, including remaining 

sequential phases, to be compared to theoretical 

execution time obtained with Amdahl’s law. 

 

 

 

 

3.6.  Functional Correctness 

All tests presented correct outputs, checked based on 

md5sum signature. 

However when trying to optimize total algorithm 

parallelization speed up of the adaptive mirror 

application by trying to parallelize the buildRef function 

which was remaining sequential in our port, we faced an 

interesting issue worth to be discussed.  Parallelization 

of this function actually impacts the parallelization of a 

floating point summation. While commutativity 



 

property holds for a real numbers summation, it is 

known not to be necessarily the case with floating 

points and in our case precision of the final result is 

indeed impacted by the order in which this sum 

operation is performed.  

Parallel code results in a different order of operation 

than the sequential version. This forbids us to get a bit 

accurate result between sequential and parallelized 

version of the algorithm. In our specific case as the 

unique success criteria was a bit accurate final image 

result compared to the sequential execution we  did not 

focus any additional efforts on analyzing the actual 

discrepancies and evaluating if  the non-accurate results 

were actually still acceptable in terms of result overall 

quality.  

3.7. Qualitative metrics on Extrae exploitation 

During the project we evaluated the benefit of Extrae 

instrumentation and Paraver visualization to provide 

better visibility and understanding of parallel execution 

of the algorithm on actual target, providing crucial 

pieces of information in the efficient usage of the 

multicore resources.   

During HRGEO initial parallelization no fine tuning 

was used and static scheduling was applied, resulting in 

unbalanced execution illustrated below where fourth 

core starves.  

 
Analysis of the last loop code shows that it traverses a 

really small iteration space and static partitioning cannot 

divide the space perfectly into 4 threads, so the last one 

gets less workload. The processing consists of two 

nested loops and only outer one is actually parallel. As 

the loops are perfectly nested they can be collapsed so 

as to increase the iteration space and better balance the 

chunks split.  

Finally as some threads do not get enough work in the 

first loop, a switch to guided schedule could help by 

forcing a mode dynamic scheduling with big chunks at 

the beginning then small at the end. 

 

4. SUCCES CRITERIA 

4.1. Definition  

A set of success criteria were defined and detailed 

hereafter: 

(Criteria#1) OpenMP runtime execution time overhead  

Acceptable bound is set to 5% for a monocore usage of 

OpenMP 

(Criteria#2) OpenMP runtime code / data size overhead  

Acceptable bound is set to 500kB of code and same for 

data.  

(Criteria#3) Extrae embedded instrumentation library 

timing overhead 

Acceptable bound is set to 5% 

(Criteria#4) Extrae timing measurement accuracy 

Here the accuracy must be in the order of magnitude of 

what is achieved with manual instrumentation through 

available hardware timers 

(Criteria#5) Multicore achieved speed up 

Up to 8 cores :  [Amdahl-1; Amdahl] 

From 16 cores considering non-optimized usage of 

Kalray cluster (application linked entirely in DDR) we 

relax a bit the target on purpose:  [Amdahl-2; Amdahl] 

(Criteria#7) Functional Correctness of parallelized 

code Bit accurate output image 

(Criteria#6) Multicore efficient exploitation, explored 

with Extrae instrumentation 

(Criteria#8) Initial Instrumentation Effort 

(Criteria#9) Porting effort when switching to a new 

target 

(Criteria#10) Observability capabilities through 

instrumentation 

4.2. Evaluation  

 



 

  

5. CONCLUSION  

Both selected targets SDKs were already supporting a 

mature openMP runtime, demonstrating the ecosystem 

is ready on both for radiation hardened and COTS 

components perspective. Porting based on a GNU GCC 

mainstream compiler is completely in line with current 

state of the art and golden rules applied in the scope of 

embedded software development as far as compiler 

choice is concerned.. 

The initial parallelization effort of legacy code revealed 

to be low, as expected, thanks to non-intrusive openMP 

annotations scheme. Selected annotations used to reach 

the decent performance improvement presented in this 

report were very limited in number and complexity, and 

selected so as to preserve determinism from one 

execution to another. An opposite choice could have 

been taken so as to introduce some more random 

dynamic scheduling schemes to capitalize on 

complexity to avoid deterministic worst cases.  

The porting effort when switching from the first 

radiation hardened hardware target to the second COTS 

other proved to be inexistent as openMP annotations 

remained strictly unchanged. This is applicable as well 

to Extrae activation and manual instrumentations. The 

only customization consisted in openMP environment, 

.i.e. number of available cores. 

Open source Extrae observability library and its 

associated Paraver visualization tool both provided by 

BSC and so far mainly targeting HPC mainstream 

world, were successfully ported to GR740 and MPPA 

Coolidge ManyCore. They provided all the expected 

features to sustain efficient profiling, verification and 

parallelization tuning. The tooling required a reasonable 

learning phase, is well documented and offers a 

standardized hardware agnostic interface allowing 

focusing on the actual data providing added value to the 

final end user mainly in the form of graphical intuitive 

load dispatch representations, timing information, and 

hardware counters. Such knowledge is mandatory to 

ensure efficient usage of multi and many cores, and 

support production delay shortening.  

However it is important to remind that despite we 

demonstrated during this evaluation phase that the 

selected algorithms can be efficiently parallelized and 

observed, this is only valid for those two selected 

representative algorithms, and of course cannot prove 

applicable to any legacy code. We also found some 

limitation in the strategy for some of the functions 

where the ideal speed up cannot be reached either due to 

openMP overhead or due to actual hardware resource 

usage bottlenecks. While mitigation of the detected poor 

IPCs performance in well balanced parallel phase 

remain to be defined, we however confirmed that all 

possible observables would be available through the 

evaluated OpenMP framework to detect such corner 

cases and support such analysis.   

 As a result this evaluation comforts the idea that 

OpenMP could and should be seriously considered in 

the scope of future R&D multicore roadmap, as well as 

for rapid prototyping in advanced studies, especially 

when considering new space approaches.  

As stated before HP4S defined two strategic end goals:  

G1. Improve overall system performance. Effectively 

master and exploit the most advanced parallel 

embedded architectures targeting the space domain. 

G2. Improve the parallel programming productivity. 

Reduce the development efforts of systems based on 

parallel architectures, while fulfilling system's 

functional and non-functional (time predictability) 

requirements 

Those two goals derived in a set of technical measurable 

objectives, listed hereafter: 

O1. Facilitate the development, timing analysis and 

execution of parallel real-time space applications using 

the OpenMP parallel programming model.  

O2. Evaluate the interest and porting effort of a list of 

homogeneous and heterogeneous foreseen COTS and 

RadHard hardware targets in the space domain with 

OpenMP programming model and framework.  

 

O3. Adapt the OpenMP runtime libraries to ensure that 

the timing guarantees devised at analysis time can be 

guaranteed at deployment time.  

O4. Evaluate state-of-the-art compiler techniques to 

guarantee that parallel OpenMP  

O5. Demonstrate the portability benefits of the OpenMP 

parallel programming model.  

The outcomes of the previous preparatory and 

implementation phase, completed by the experiments 

results obtained during the evaluation phase and 

presented in the report allow us to state that O1, O2, and 

O5 are achieved while O3 and O4 remain open for 

future work.  


