

EUROPEAN WORKSHOP ON ON-BOARD DATA PROCESING (OBDP2021), 14-17 JUNE 2021

HP4S: HIGH PERFORMANCE PARALLEL PAYLOAD PROCESSING FOR SPACE

Franck Wartel
(1)

, Antoine Certain
(2)

(1)
Airbus Defence & Space, 31 rue des cosmonautes, 31402 Toulouse, France Email: franck.wartel@airbus.com

(2)
 Airbus Defence & Space, 31 rue des cosmonautes, 31402 Toulouse, France Email:antoine.certain@airbus.com

ABSTRACT

Next generation space missions will require more

capable computers in order to implement either

advanced navigation and control algorithms needed to

increase the spacecraft autonomy and agility or on the

payload side with complex scientific payload data pre-

processing algorithms. The advent of low-power multi-

and many-cores processor architectures provides critical

real-time embedded systems with an unprecedented

performance level, opening the door to implement more

intelligent systems. These architectures however,

pressure the software development process, as

applications must be parallelised in order to exploit the

huge performance capabilities they offer.

The complexity of parallel programming has already

been identified as a major challenge in general purpose

computing, and it is now exacerbated in the critical

embedded systems domain, due to the non-functional

properties that these systems must fulfilled, e.g.

functional safety and time predictability.

The majority of architectures incorporate parallel

programming models in their software development kits

with the objective of easing programmability and

exploiting performance capabilities. These models

provide an interface that entails a level of abstraction

enabling to expose parallelism while hiding the

complexity of the processor architecture. Parallelism is

accomplished by the definition of independent

execution units and synchronization mechanisms that

guarantee the correct control- and data-flow.

The decision on what parallel programming model is

used directly affects portability. While high level

models can be compiled and executed on different

architectures supporting the same model without

modifying the application, low level APIs (e.g.

Pthreads) may require some tuning before they can be

ported to another machine.

Overall, parallel programming models are a

fundamental element to exploit the huge performance

capabilities offered by the newest parallel

heterogeneous architectures.

The purpose of this study is to demonstrate the benefits

of using one of the most well-known parallel

programming models, i.e. OpenMP, for the

development of parallel space applications, in terms of

performance, programmability and portability.

Two main goals are identified:

 Improve overall system performance by exploiting

the most advanced parallel embedded architectures

targeting the space domain

 Improve the parallel programming productivity by

reducing the initial development efforts of systems

based on parallel architectures,

By selecting and porting two representative payload

processing use cases to OpenMP parallel programming

model, and evaluating their deployment on two high-

end computing devices, GR740 in the radiation

hardened components family and latest Kalray Coolidge

MPPA as COTS, the project execution successfully

demonstrated that usage of OpenMP parallel

programming could facilitate the development, and

analysis of parallel real-time space applications.

Development framework is completely based on open

source solutions. Cross compiler for the selected targets

is mainstream GNU GCC and includes OpenMP 4.5

runtime and open source observability tools provided by

Barcelona Supercomputing Center (Paraver and Extrae)

were ported from HPC mainstream to the selected

hardware targets, and exercised through the selected

software use cases.

1. PREPARATORY PHASE

The preparatory phased purpose was to refine and

summarize the actual needs, analyse the potential

software solutions and associated challenges to build a

solid plan for prototyping and evaluation on relevant

targets.

1.1. System Needs and perspective for use of

OpenMP

There are typically two different categories of on-board

data processing platforms in spacecraft. Some

computers are responsible for spacecraft or instrument

control; others are responsible for the on-board

processing of instruments data, more often located on

the Payload segment.

For both categories, we foresee that next generation

space missions will require more capable computers,

with respect to what we can implement today using

proven technologies like the LEON processor. On the

control side, spacecraft autonomy and agility need to be

improved thanks to new sensors data acquisition and

processing for in-situ real-time usage, such as for

instance visual based navigation. On the payload side,

scientific data pre-processing algorithms as well as

more robotics for in-orbit/on-Planet operations are

foreseen with, in the long term, the foreseeable usage of

artificial intelligence.

Two tracks are identified by Airbus Defence and space,

largely shared with other European space Industrial for

achieving such goal, and supported by the technology

roadmap of the European Space Agency and national

agencies:

 The development of new processing architectures

on new rad-hard technologies such as, among

others, the recent GR740 and HPDP with the STM-

65nm and the future Dahlia/Brave-Ultra targeted

for the new STM 28nm FD-SOI provide higher

running frequencies with more efficient processing

devices. On this technology track, developments of

High performance computers are on-going which

all require the capability to efficiently develop

software on Multi-Core devices.

 The development of mitigation techniques enabling

the use of commercial of the shelves processors

(COTS) both as FPGA and micro-processors in the

space environment. This way has been supported

and matured through the ESA “COTS Based

Computers” studies in which Airbus Defence and

Space was strongly involved. For instance, this

track which is more easily applicable for the LEO

orbit has enabled the new Airbus product line

“PureLine” based on automotive quality grade

parts.

In this context, the emergence of complex computing

architecture embedding many processing cores on single

device is a real opportunity to drastically increase the

on-board processing capability for both of these

technology development tracks.

A wide range of devices are relevant for satisfying these

needs:

 FPGAs (Field-Programmable Gate Arrays) use

configurable logic blocks and implement a wide

range of applications. They tend to outperform with

streamed algorithms.

 DSPs (Digital Signal Processors) are optimized for

single thread signal processing applications which

mainly use typical signal processing operations.

DSPs tend to perform these operations using fewer

instructions than GPPs, and with lower power

consumption. Some DSPs have a SIMD (Single

Instruction, Multiple Data) architecture giving them

Data Level Parallelism (DLP) capabilities.

 GP GPUs (General Purpose Graphics Processing

Units) There is a wide variety of GPU architectures,

but they usually consist of up to 32 cores, with each

core containing up to hundreds of processing units.

The cores have their own instruction stream and the

same stream is shared by the processing units of a

core. The cores have a private, local memory and

they communicate through the GPU shared

memory.

 Many-core processors are designed to reach high

throughputs using Thread Level Parallelism (TLP).

Usually, the cores are quite small in order to fit a

high number of them on a chip with reasonable

power consumption.

 Multi-core GPPs (General Purpose Processors)

outperform in single-threaded applications and

mostly take advantage of ILP (Instruction Level

Parallelism) thanks to complex pipelined and

superscalar architectures. This parallelization is

implicit since it is automatically managed by the

hardware. GPPs rely on cache memories to reduce

the latency of memory transfers. Multi-core

architectures make it possible to run some threads

in parallel.

Some systems use a combination of devices to

implement the overall application. To choose the most

suitable hardware solution for a specific algorithm,

several items such as cost, speed, flexibility, power and

optimization as well as the design environment (team’s

skill, design tools, licensing…) should be taken into

account.

The complexity of parallel programming has already

been identified as a major challenge in general purpose

computing, and it is now exacerbated in the critical

embedded systems domain, due to the non-functional

properties that these systems must fulfil, e.g. functional

safety and time predictability.

OS’s and RTOS’s already provide all the services

required to designing a parallel application.

Nonetheless, reaching a high level of parallelism by

only using the services of the OS is hard as it requires

finding a good balance between the loads of the

different cores with very rudimentary tools.

The majority of architectures incorporate parallel

programming models in their software development kits

with the objective of easing programmability and

exploiting performance capabilities. These models

provide an interface that entails a level of abstraction

enabling to expose parallelism while hiding the

complexity of both the processor architecture and the

OS.

OpenMP presents the following advantages over its

competitors:

 Different evaluations demonstrate that OpenMP

delivers performance and efficiency tantamount to

highly tunable models such as TBB, CUDA,

OpenCL, and MPI. Regarding low-level libraries

such as Pthreads, it offers multiples advantages

such as: a) robustness without sacrificing

performance, and b) OpenMP does not lock the

software to a specific number of threads.

 The code can be compiled as a single-threaded

application by either disabling support for OpenMP

or assigned a single computing unit (i.e., OpenMP

thread), thus easing debugging.

 OpenMP has a large and experienced community

that has constantly reviewed and augmented the

language for the past 20 years achieving great

expressiveness. OpenMP is the de-facto shared-

memory programming model standard. The

language defines a very powerful tasking model

that allows expressing fine-grained, both regular

and irregular, and highly-dynamic task parallelism,

augmented with features to express task

dependencies. The latest specification of OpenMP

also incorporates new features that facilitate the

coupling of a main host processor to accelerator

devices by defining both synchronous and

asynchronous communication between them.

 OpenMP is widely implemented by several chip

and compiler vendors (e.g. GNU, Intel, IBM,

Kalray, Texas Instruments). Typically, ensuring

functional correctness in languages that are not

developed for such purpose is not straightforward.

Nonetheless, OpenMP static correctness techniques

are quite mature and simple compared to other

parallel programming models which are not

designed with correctness in mind (e.g. the low

level Pthreads API or the Message Passing

Interface, MPI).

Overall, OpenMP is a good candidate to be used in the

real-time embedded domain in general, and in the space

domain specifically by virtue of its benefits.

1.2. Evaluation Plan

Based on the definition of those requirements, a work

plan for applicability of OpenMP on different targets

was established, so as to answer the project goals

objectives and provide crucial pieces of information

amongst which:

 a measurable view of the performance of high

demanding algorithms with two different multiple

cores targets using an OpenMP implementation

 feedback and experience on the efficiency of

OpenMP to parallelize application

 some practical view on the portability offered by

the OpenMP framework

A set of criteria was defined and applied to select

software and hardware to be exercised.

1.3. Use Case: HRGEO

Correlation ResamplingImage sensor Output image

Estimated shift

Fusion Stabilisation

Reference image

The complete algorithm is divided into several

computation stages. The sensor image is a RGB image

with the three composites values for each pixel (no

bayering is considered here).

The algorithm includes image registration, resampling

and fusion. The goal of the algorithm is to improve the

S/N ratio on a static image by merging multiple images

from a stream coming out of a more or less steady

camera. The algorithm creates and manages a geometric

model which fits the image displacement. It

accumulates the successive images into a single

reference image after compensating for the

displacement with sub-pixel accuracy.

The implementation uses fixed-point representation for

image correlation and keeps only a few operations in

double precision.

1.4. Use Case: Adaptive Mirror

Future earth observation satellites with high resolution

requirements will need primary mirrors of huge size.

Due to their big size, they will suffer thermoelastic

deformations. Adaptive optics allows fixing these

defaults thanks to a deformable mirror actuated by a

myriad of piezo actuators. The wave front defaults are

measured on board by a Shack-Hartmann analyzer with

its image sensor. Wavefront sensors aim at analyzing

the shape of an incident beam's wavefront in order to

identify aberrations caused by light traveling through

individual optics or optical assemblies.

The algorithm is composed of two steps. It is applied on

a 12x12 matrix of lenses for 3 detectors that are

independent. But not all lenses must be processed, only

the ones with a light intensity above a certain threshold.

The light intensity is a constant, thus the number of

lenses to be processed can be defined beforehand. 104

lenses have to be processed in the current

implementation.

As illustrated in above, the image processing partition is

composed of two parts: one that computes a first rough

estimate of the shifts and interpolates the image with

this shift; and another one that uses the interpolated

image to compute a very precise shift.

1.5. Hardware Targets Selection

Based on a set of criteria not detailed in this public

report on purpose, two hardware targets were selected

amongst the following candidates { GR740, HPDP,

RC64 } for the radiation hardened targets and { Zynq,

Zynq MPSoC, Kalray Coolidge MPPA } for the COTS

ones.

The GR740, the Coolidge and the Zynq

7000/UltraScale+ appeared to be the targets the best

suited to the HP4S study. This is mostly because they

implement hardware cache coherency mechanisms, they

support SMP and their software stack is based on open-

source tools. On the other hand, the other two targets

that are considered (the RC64 and the HPDP) have

software stacks based on proprietary tools and a high

effort would be required to implement a reduced

OpenMP runtime on these targets.

Final selected ones are GR740 and MPPA Coolidge.

2. IMPLEMENTATION PHASE

2.1. Use case software porting to OpenMP

methodology

The implementation was divided into two stages for this

study:

 Porting for first sequential execution on the targets.

 Parallelization of the applications with OpenMP

(low optimization effort).

The sequential version of application serves as a

reference for the considered evaluation metrics, such as

memory occupation and of course execution time

performance speed up with the parallelized version.

A single parallel implementation is performed for each

use-case and the efficiency of this implementation is

evaluated on the different targets to evaluate portability

capabilities of OpenMP.

The methodology followed to parallelize the use-cases

is presented below:

2.2. Identifying the hotspots of the algorithm

The hotspots can be identified by theoretical analysis of

the algorithm or empirically, by profiling the sequential

program. Initial measurements and profiling executed

on x86_64 benefited from standard HPC tools through

GNU gprof x86_64 and Intel VTune Analyzer.

This allowed selecting the main functions to parallelize

for each use case, yielding 99.8% of the sequential

execution time for HRGEO application and 90% for the

adaptive mirror one.

2.3. Choosing an appropriate parallelization

strategy for each hotspot

Selecting a parallelization strategy consists in

identifying the appropriate type of parallelism and the

appropriate OpenMP constructs to implement it. With a

good parallelization strategy, it is possible to achieve

high performance with minor modifications to the serial

code.

The different types of parallelism are:

 Data parallelism, where each thread executes the

same task on different sets of data.

 Task parallelism, where each thread executes a

different task. This can be used to parallelize

recursive algorithms or to create pipelines.

Both data and task parallelism can be implemented with

different OpenMP constructs:

 Worksharing constructs: The work is divided into

work items which are distributed over a team of

threads, either statically or dynamically.

 Tasking constructs: Although writing task-parallel

programs with worksharing constructs is possible, it

is often inconvenient. Tasking constructs have been

introduced to provide a convenient syntax and more

flexibility for task parallelism.

To summarize, worksharing constructs are suited to data

parallelism (do/for loop constructs) while tasking

constructs implement task and data parallelism more

conveniently and with more flexibility.

The synchronization and data management clauses are

applied to the different worksharing and tasking

constructs. Synchronization points can also be added at

specific points of the program.

2.4. Investigating the potential issues when the

targeted acceleration is not met

The following points can be responsible for low

performances:

 Poor memory accesses due to an inefficient use of

cache memory. To maximize the cache efficiency,

each thread should be able to work on independent

sets of data and the cache spatial and temporal

locality principles should be taken into account.

Achieving this may require source code

modifications.

 Overhead due to synchronization, scheduling or

context switching. Several solutions not detailed

here can be considered depending on the origin of

the overhead.

 Unbalanced workload across threads. Several

solutions not detailed here can be considered

depending on the origin of the unbalance.

2.5. Porting observability tools

Compilation tool chain already support OpenMP 4.5 on

both targets through RCC 1.3-rc6 and ACE SDK 4.1.0

respectively on GR740 and Kalray Coolidge targets.

There are two main additional tools used during this

evaluation: Extrae which is used to instrument code and

Paraver which displays the data collected by Extrae.

Both have been developed and are maintained as open-

source project by the Barcelona Supercomputing Centre

(BSC). Extrae is a rich tool which takes advantages of

reusing packages from others developers’ community.

It supports natively CUDA, OpenCL and OpenMP

environments. In its basic version it allows to measure

time and the number of instructions executed. To get

memory usage information (which could be very

interesting for optimization) then the PAPI library

should be used. PAPI provides a consistent interface

and methodology for use of the performance counter

hardware found in most major microprocessors but the

usage of this library requires a lot of re-compilation,

including the kernel.

Extrae uses an XML configuration file at runtime. This

configuration file is used to enable or disable some

profiling features, and to set some parameters. Once the

program has been executed, the profiling data can be

displayed and analysed with Paraver.

Extrae adaptation to the embedded targets consisted in

replacing some of the techniques applied on regular

HPC context to comply with the embedded constraints.

Ported extrae intends to keep benefiting from all the

features of the HPC mainstream version; however ports

realized during this study present some limitations due

to their alpha version and bounded effort. One of the

main changes is related to automatic instrumentation.

Originally based on the LD_PRELOAD dynamic calls

interception at runtime, it had to be adapted for

embedded targets using symbol wrapping at compile

time using linker flags, as illustrated in following

Figure.

Another modification lies in the hardware counter

gathering process originally based on PAPI library.

While PAPI library is natively available on Kalray

Coolidge MPPA, hardware counters function was

enhanced to also benefit from GR740 L4STAT

counters, through L4STAT driver.

3. Evaluation Phase

3.1. GR740 Test setup

GR740Linux Development Host

(Ethernet 1 Gbps)

 (ftdi 25 Mhz for UART and GRMON)

data
Development

PC (X64) GR740 Processing Board

Ethernet/IP/TCP NFS CLient

RTEMS5 SMP OS

OpenMP runtime

Ethernet Driver

NFS Ethernet client for I/Os

Use Case application

Extrae 3.7.1 instrumentation lib for observability

Cobham RCC 1.3-rc6

GRMON for upload/execution/serial
Linux NFS server for I/Os

Paraver traces visualization tool

OPENMP RUNTIME EXTRAE LIB

NFS Server HRGEO
Processing

As illustrated in Figure above, the test setup is mainly

composed of a GR-CPCI-GR740 Quad-Core LEON4FT

Development Board, connected to a Linux host

development machine.

I/Os consist of input data file either directly linked with

the application or retrieved from development host

through NFS over a 1Gbps Ethernet link. This NFS

share is also used to retrieve both functional and

instrumentation outputs.

The software stack on the development host is

composed of RCC 1.3-rc6, grmon Pro 2.0.98, nfs-

kernel-service, BSC Paraver, version 4.8.1.

The software stack on the embedded platform is

composed of RTEMS 5 SMP, Actual Use Case

algorithm linked, OpenMP 4.5 runtime, Extrae 3.7.1

instrumentation library from BSC ported to GR740

3.2. KALRAY TEST SETUP

The Kalray test setup is based on the MPPA® DEV4

workstation which is a complete X86 – MPPA® based

environment, packaged with Kalray S/W, for easy

benchmarking and development of accelerated systems.

This development is composed of a x86_64 host part

running a standard Linux distribution and a KONIC200

PCIe Programmable accelerator card, hosting the

Coolidge MPPA device.

Two modes of operation were exploited during the

study. The first one is the JTAG mode on single cluster.

It consists on the generation of a standalone executable

intended to be run and parallelized on a single cluster on

top of the Kalray Cluster OS. Deployment of the

executable on target relies a JTAG link with PCIe

acceleration for executable or binary blobs transfer

to/from MPPA® Coolidge target. The JTAG mode also

offer semi-hosting capabilities allowing to access host

file system through regular file manipulation calls, with

inherent

Second mode of operation explored is OpenCL

offloading where the Coolidge manycore is considered

as an accelerator. The kernels that will run in the

accelerator must be compiled in isolation with the

OpenCL compiler, and then linked with the host

application part. All the communication is done through

PCIe.

The software stack on the host platform is composed of

Kalray SDK ACE 4.1.0, based on gcc 7.5.0, and same

x86 4.8.1 Paraver version than the one used for GR740.

On the embedded part the stack is composed of

ClusterOS, which is a light OS optimized for MPPA®

cluster, with openMP 4.5 supports and multithreading

support through pThread POSIX, as well as a port of

Extrae 3.7.1 to the Coolidge architecture.

3.3. Test Scenario

Test scenario for both HRGEO and MIRROR use cases

execution on target follows an incremental approach.

First the algorithm is executed in its pure sequential

form to obtain a reference baseline.

Then algorithm is executed with OpenMP runtime

integrated but only 1 core mainly to measure open MP

overhead in terms executable size overhead and

execution time overhead.

Then the number of exploited cores is incrementally

increased to measure actual multicore performance gain

thanks to parallelization.

Finally OpenMP Extrae is integrated on the scenario

with the maximum number of cores active to check the

observability mechanism and verify proper and efficient

parallelization of the code.

For each of those tests functional correctness of

parallelized code is verified by comparing outputs

against expected ones for the predefined set of inputs.

3.4. Quantitative metrics

The figure of merit is used to detect an unbalanced

workload across threads for parallelized software

sections:

durationtotal

durationtask
FOM

_

_

The FOM is 1 for a single core processor because all

tasks are executed sequentially. The FOM is N for a

perfectly balanced workload across N cores

The theoretical total speed-up achieved by parallelizing

the hotspots is provided by Amdhal’s criteria and it has

to be taken into account when selecting the hotspots to

be parallelized.

sequential
F

N

parallel
FNS

1

 S_N is the theoretical speed-up of the whole

program with N cores.

 F_parallel is the fraction of time consumed by the

regions considered for parallelization.

 F_sequential is the fraction of time consumed by

the sequential regions

3.5. Speed Up

This section presents the measure figure of merit for

each individual parallelized loop as well as the overall

total algorithm time speed up, including remaining

sequential phases, to be compared to theoretical

execution time obtained with Amdahl’s law.

3.6. Functional Correctness

All tests presented correct outputs, checked based on

md5sum signature.

However when trying to optimize total algorithm

parallelization speed up of the adaptive mirror

application by trying to parallelize the buildRef function

which was remaining sequential in our port, we faced an

interesting issue worth to be discussed. Parallelization

of this function actually impacts the parallelization of a

floating point summation. While commutativity

property holds for a real numbers summation, it is

known not to be necessarily the case with floating

points and in our case precision of the final result is

indeed impacted by the order in which this sum

operation is performed.

Parallel code results in a different order of operation

than the sequential version. This forbids us to get a bit

accurate result between sequential and parallelized

version of the algorithm. In our specific case as the

unique success criteria was a bit accurate final image

result compared to the sequential execution we did not

focus any additional efforts on analyzing the actual

discrepancies and evaluating if the non-accurate results

were actually still acceptable in terms of result overall

quality.

3.7. Qualitative metrics on Extrae exploitation

During the project we evaluated the benefit of Extrae

instrumentation and Paraver visualization to provide

better visibility and understanding of parallel execution

of the algorithm on actual target, providing crucial

pieces of information in the efficient usage of the

multicore resources.

During HRGEO initial parallelization no fine tuning

was used and static scheduling was applied, resulting in

unbalanced execution illustrated below where fourth

core starves.

Analysis of the last loop code shows that it traverses a

really small iteration space and static partitioning cannot

divide the space perfectly into 4 threads, so the last one

gets less workload. The processing consists of two

nested loops and only outer one is actually parallel. As

the loops are perfectly nested they can be collapsed so

as to increase the iteration space and better balance the

chunks split.

Finally as some threads do not get enough work in the

first loop, a switch to guided schedule could help by

forcing a mode dynamic scheduling with big chunks at

the beginning then small at the end.

4. SUCCES CRITERIA

4.1. Definition

A set of success criteria were defined and detailed

hereafter:

(Criteria#1) OpenMP runtime execution time overhead

Acceptable bound is set to 5% for a monocore usage of

OpenMP

(Criteria#2) OpenMP runtime code / data size overhead

Acceptable bound is set to 500kB of code and same for

data.

(Criteria#3) Extrae embedded instrumentation library

timing overhead

Acceptable bound is set to 5%

(Criteria#4) Extrae timing measurement accuracy

Here the accuracy must be in the order of magnitude of

what is achieved with manual instrumentation through

available hardware timers

(Criteria#5) Multicore achieved speed up

Up to 8 cores : [Amdahl-1; Amdahl]

From 16 cores considering non-optimized usage of

Kalray cluster (application linked entirely in DDR) we

relax a bit the target on purpose: [Amdahl-2; Amdahl]

(Criteria#7) Functional Correctness of parallelized

code Bit accurate output image

(Criteria#6) Multicore efficient exploitation, explored

with Extrae instrumentation

(Criteria#8) Initial Instrumentation Effort

(Criteria#9) Porting effort when switching to a new

target

(Criteria#10) Observability capabilities through

instrumentation

4.2. Evaluation

5. CONCLUSION

Both selected targets SDKs were already supporting a

mature openMP runtime, demonstrating the ecosystem

is ready on both for radiation hardened and COTS

components perspective. Porting based on a GNU GCC

mainstream compiler is completely in line with current

state of the art and golden rules applied in the scope of

embedded software development as far as compiler

choice is concerned..

The initial parallelization effort of legacy code revealed

to be low, as expected, thanks to non-intrusive openMP

annotations scheme. Selected annotations used to reach

the decent performance improvement presented in this

report were very limited in number and complexity, and

selected so as to preserve determinism from one

execution to another. An opposite choice could have

been taken so as to introduce some more random

dynamic scheduling schemes to capitalize on

complexity to avoid deterministic worst cases.

The porting effort when switching from the first

radiation hardened hardware target to the second COTS

other proved to be inexistent as openMP annotations

remained strictly unchanged. This is applicable as well

to Extrae activation and manual instrumentations. The

only customization consisted in openMP environment,

.i.e. number of available cores.

Open source Extrae observability library and its

associated Paraver visualization tool both provided by

BSC and so far mainly targeting HPC mainstream

world, were successfully ported to GR740 and MPPA

Coolidge ManyCore. They provided all the expected

features to sustain efficient profiling, verification and

parallelization tuning. The tooling required a reasonable

learning phase, is well documented and offers a

standardized hardware agnostic interface allowing

focusing on the actual data providing added value to the

final end user mainly in the form of graphical intuitive

load dispatch representations, timing information, and

hardware counters. Such knowledge is mandatory to

ensure efficient usage of multi and many cores, and

support production delay shortening.

However it is important to remind that despite we

demonstrated during this evaluation phase that the

selected algorithms can be efficiently parallelized and

observed, this is only valid for those two selected

representative algorithms, and of course cannot prove

applicable to any legacy code. We also found some

limitation in the strategy for some of the functions

where the ideal speed up cannot be reached either due to

openMP overhead or due to actual hardware resource

usage bottlenecks. While mitigation of the detected poor

IPCs performance in well balanced parallel phase

remain to be defined, we however confirmed that all

possible observables would be available through the

evaluated OpenMP framework to detect such corner

cases and support such analysis.

 As a result this evaluation comforts the idea that

OpenMP could and should be seriously considered in

the scope of future R&D multicore roadmap, as well as

for rapid prototyping in advanced studies, especially

when considering new space approaches.

As stated before HP4S defined two strategic end goals:

G1. Improve overall system performance. Effectively

master and exploit the most advanced parallel

embedded architectures targeting the space domain.

G2. Improve the parallel programming productivity.

Reduce the development efforts of systems based on

parallel architectures, while fulfilling system's

functional and non-functional (time predictability)

requirements

Those two goals derived in a set of technical measurable

objectives, listed hereafter:

O1. Facilitate the development, timing analysis and

execution of parallel real-time space applications using

the OpenMP parallel programming model.

O2. Evaluate the interest and porting effort of a list of

homogeneous and heterogeneous foreseen COTS and

RadHard hardware targets in the space domain with

OpenMP programming model and framework.

O3. Adapt the OpenMP runtime libraries to ensure that

the timing guarantees devised at analysis time can be

guaranteed at deployment time.

O4. Evaluate state-of-the-art compiler techniques to

guarantee that parallel OpenMP

O5. Demonstrate the portability benefits of the OpenMP

parallel programming model.

The outcomes of the previous preparatory and

implementation phase, completed by the experiments

results obtained during the evaluation phase and

presented in the report allow us to state that O1, O2, and

O5 are achieved while O3 and O4 remain open for

future work.

