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ABSTRACT

New generations of spacecrafts are required to perform
tasks with an increased level of autonomy. Space explo-
ration, rendezvous services, space robotics, etc. are all
growing fields in Space that require more sensors and
more computational power to perform these missions.
Furthermore, new sensors in the market produce better
quality data at higher rates while new processors can in-
crease substantially the computational power. Therefore,
near-future spacecrafts will be equipped with large num-
ber of sensors that will produce data at rates that has
not been seen before in space, while at the same time,
data processing power will be significantly increased. In
regards to guidance navigation and control applications,
vision-based navigation has become increasingly impor-
tant in a variety of space applications for enhancing au-
tonomy and dependability. Future missions such as Ac-
tive Debris Removal will rely on novel high-performance
avionics to support image processing and Artificial In-
telligence algorithms with large workloads. Even more
complex is the case of vision-based precision landing,
that high rate processing is a must and can be the tip-
ping point of a successful mission. This new scenario of
advanced Space applications and increase in data amount
and processing power, has brought new challenges with
it: low determinism, excessive power needs, data losses
and large response latency. In this article, a novel ap-
proach to on-board artificial intelligence (AI) is presented
that is based on state-of-the-art algorithmic trading soft-
ware techniques, which is a field that underwent a sim-
ilar challenge, although is a different scale, in the early
2010. The approach presented here optimizes the lim-
ited available computing resources, and makes AI appli-
cations much more reliable, therefore somewhat reshap-
ing the paradigm of embedded software engineering. A
benchmarks is presented here for a pose estimation of the
asteroid 67P/Churyumov–Gerasimenko using AI base of
images from the Rosetta mission. In this paper, we show
that the data processing rate and power saving of the ap-
plications increase substantially with respect to standard
AI solutions.
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1. INTRODUCTION

It is common ground that embedded systems have
evolved hugely in the last decade [1]. New generations
of autonomous embedded systems are required to per-
form more and faster on-board data processing. Sen-
sors, embedded processors, and hardware in general have
hugely evolved in the last decade, equipping embedded
systems with large number of sensors that will produce
data at rates that has not been seen before while simulta-
neously having computing power capable of large data
processing [2], [3]. However, embedded software en-
gineering has remain virtually unchanged for the last
two decades, making the development of advanced appli-
cation extremely cumbersome, error-prone, sub-optimal
and usually delay incurring [4]. Although the work pre-
sented here is general to all embedded systems, the spe-
cific fields where tests were performed are AI onboard
and a real space application. Hence, the specific discus-
sion about the state of the art in both fields is included in
this introduction.

1.1. AI Space systems

Space applications requiring on-board signal processing
at high rate is a growing field. It is particularly important
the use of AI for reducing signal-to-noise-ratio (SNR).
Typical applications are Internet of Things (IoT), traffic
control, telecomms application, etc.

Another field where AI is becoming critical is Earth Ob-
servation. There is a growing number of Synthetic Aper-
ture Radar (SAR) sensors in satellites due to the increas-
ing demand for Earth applications for SAR data. The
amount of data produced by a SAR sensor prevents real-
time data transfer to the ground due to the limitations of
downlink speeds, thus requiring large on-board data stor-
age. Several high-level solutions have been proposed to
improve this:

• Use specialised on-board compression algorithms.

• Use on-board Artificial Intelligence (AI) to filter ir-
relevant or low quality data and send only a subset
of data.



1.2. Space autonomous navigation systems

In a different field, vision based navigation, there is also
a challenge of data processing combined with AI algo-
rithms. One example is rendezvous with uncooperative
objects in space, e.g., debris removal [5], [6], [7]. An-
other example of this is autonomous pinpoint planetary
landing, where the number of sensors and the complex-
ity of the Guidance Navigation and Control (GNC) algo-
rithms make this discipline still one of the biggest chal-
lenges in space [8], [9], [10]. One common element to
these two use cases, is a well known fact in control en-
gineering: for optimal control algorithms, the higher the
rate of sensor data, the better is the performance of the
algorithm [11].

2. INFERENCE IN ARTIFICIAL INTELLI-
GENCE

There are several components to artificial intelligence (1).
First, there is the training and design of the model. This
activity is usually carried out by data scientists for a spe-
cific field of interest. Once the model is designed and
trained, the model is deployed to the target computer for
real-time execution. This is what is called inference. In-
ference consists of two parts, the trained model and the
AI inference engine to execute the model. The focus of
this research has been solely on the inference engine soft-
ware algorithms.

Data 
preparation

AI Model 
Design and 

Training
Simulation 
and Testing

Deployment 
and 

Inference

Figure 1. AI main components

3. TRENDS IN ARTIFICIAL INTELLIGENCE
INFERENCE ACCELERATION

The most common operation in AI inference by far is
matrix multiplications. These operations are constantly
repeated for each input data to the AI model. In recent
years, there has been a substantial development in this
area with both industry and academia progressing sub-
stantially in this field. While the current trend is to focus
on hardware acceleration like Graphic Processing Units
(GPU) [12] and Field-programmable gate array (FGPA)
[13], these techniques are currently not broadly available
to the Space industry due to radiation issues and exces-
sive energy consumption for the former, and program-
ming costs for the latter. The use of CPU for inference,
however, has been also undergoing an important revolu-
tion when the CPU core has a Floating processing unit
(FPU) connected to it [14]. CPUs are widely used in
Space due to large Space heritage and also ease of pro-
gramming and use. Several AI inferences engines are

available for CPU+FPU setups. The work presented here
will show the results of extensive research in building a
new AI inference that both reduces power consumption
and also increases data throughput.

4. PARALLEL PROCESSING APPLIED TO AR-
TIFICIAL INTELLIGENCE INFERENCE

Within the field of inference engines for CPU+FPU, there
has been an over-focus on matrix multiplication paralleli-
sation [15], [16]. This process consists in splitting the op-
erations required for a matrix multiplication into smaller
to be executed by several threads in parallel. Figure 2
shows an example of this type of process, where rows
from the left-hand matrix and columns from the right-
hand matrix are individual operations to be executed by
different threads.

Figure 2. Parallel matrix multiplication

The theoretical advantage of this approach is its minimal
latency [15]. However, there is an emerging alternative
approach to parallelisation, which is based in the con-
cept of pipeline [17]. This approach works in a similar
manner to an assembly line, where each part of this line
corresponds to a complete matrix multiplication. This ap-
proach is particularly well suited for AI deep neural net-
works (DNN). Figure 3 shows this approach. The main
advantage make pipeline a reliable approach to data pro-
cessing in resources constraint enviroment, like Space on-
board computers, is its higher throughput: pipelining can
enable a substantial increase in throughput with respect
to traditional parallelisation [18].

5. PIPELINEING OF A MATRIX MULTIPLICA-
TION SEQUENCE

Combining the concept of pipelining above with lock-
free algorithms [19], the authors have developed a new
pipelining approach that can process data at 2 to 8 times
increased data rate, while at the same time reduce power
consumption up to 75%. This new pipelining algorithm
consists of thee main elements:

• Use of lock-free eventloops to connect the matrix
multiplications operations.

• Use of FPU vectorisation to accelerate the matrix
multiplications



Figure 3. Pipelining vs parallelisation

• One eventloop per thread, meaning that each matrix
multiplication happens in one thread.

This novel approach can be seen in figure 4.

5.1. Matrix multiplication benchmark

In order to validate the previous approach, a basic bench-
mark was performed with the following setup:

• A sequence of n matrix multiplications, With n =
[10− 60]

• An increase rate of data from 2Hz to 100Hz.

• Each matrix is a squared matrix of 100 side of float
numbers.

• The proposed solution was compared with OpenMP
approach as suggested in figure 3

The test were perform in an AMD64 4-core computer
with the results presented in images 5 - 12. In conclu-
sion, these results show that the new proposed pipelining
approach is extremely efficient, providing up to 4 times
increase in data processing, with up to 75% reduction in
CPU usage.

5.2. AI inference pipelining

In the section we present the main aspect of the author
novelty, which is the application of the above presented
lock-free pipelining. This is achieved by applying the
pipelining approach where each layer is considered an in-
dividual operation, as shown in figure 13

There results of this pipelining can be seen in the next
section.

Table 1. AI Benchmarks for x86 64
Criteria Pipeline AI TFL OCV-CNN

Throughput 10 4.8 3.6
Latency 8ms 11ms 25ms

CPU 24 51 32
RAM 450Mb 425Mb 375Mb

6. EXPERIMENTAL SETUP

The experimental setup consists of testing of an
AI model for pose estimation of the asteroid
67P/Churyumov–Gerasimenko using AI base of
images from the Rosetta mission. The benchmark was
done comparing the propose AI inference with respect
to the two main market leaders TensorFlowLite and
OpenCV-CNN. The test was done in the two different
computers with the following parameters:

• CPUs: ARM64 (2-cores, x86 64 (4-cores)

• Data rate: 5 FPS for ARM64, 10FPS for x86 64

• Performance criteria: throughput, latency, CPU us-
age and RAM

The results are shown in the tables 1 and 2.

6.1. Results analysis

This results show ground breaking performance by dupli-
cating the data rate and reducing power consumption by
50%. All these is achieved with keeping RAM and la-
tency not only within acceptable limits, but also improv-
ing latency.



Figure 4. Novel proposed pipelining approach

Figure 5. CPU for 10 multiplication steps. Figure 6. Data throughput for 10 steps.

Table 2. AI Benchmarks for ARM64
Criteria Pipeline AI TFL OCV-CNN

Throughput 5 2.6 2.2
Latency 15ms 18ms 32ms

CPU 48 76 56
RAM 450Mb 415Mb 354Mb

These results varied from model to model, but with an
overall improvement when using the pipelining AI algo-
rithm.

7. CONCLUSIONS

In this paper, we have presented the state of the AI tech-
niques for on-board computers for Spacecrafts. We have
presented the two main approaches to data processing
acceleration, i.e., FPGA/GPU and CPUs. Within the
CPU approach, we have covered the different approaches
to data parallelisation currently in the market, includ-
ing the here presented pipelining approach. This paper
has shown that lock-free pipelining is extremely efficient
for matrix multiplications and specifically to AI appli-
cations. This techniques can both substantially increase
data throughput, reduce power consumption, while at the
same time keeping the latency, and RAM completely un-
der control and event with improvement with respect of
the industry standard tools.

Lock-free pipelining advantages are particularly bene-
ficial to Space applications, in particular for planetary

landing, where the rate of data is quite high and required
very high responsiveness. Similarly, for Earth Observa-
tion application, lock-free pipelining is very well suited
for the current large volume of data requirements.

8. FUTURE WORK

In terms of future work, the main area of research are two.
First, is the expansion of the current pipelining to support
not only sequential DNNs but also graph DNNs that re-
quire a different configuration and approach to pipelin-
ing. Preliminary tests show extremely promising results
with even higher performance gains.

Secondly, the validation of lock-free pipelining in real-
time operating systems is also an area of large research.
While a substantial amount of research has to be carried
out still, preliminary results of matrix multiplication are
quite promising.

REFERENCES

[1] P. Sharma, H. Verma, V. Negi, A. Sharma, S. Banar-
wal, and G. Verma. Evolutionary trends in embed-
ded system design. In 2016 3rd International Con-
ference on Computing for Sustainable Global De-
velopment (INDIACom), pages 2059–2062, March
2016.

[2] F. Samie, L. Bauer, and J. Henkel. Iot technologies
for embedded computing: A survey. In 2016 Inter-



Figure 7. CPU for 20 multiplication steps. Figure 8. Data throughput for 20 steps.

Figure 9. CPU for 40 multiplication steps. Figure 10. Data throughput for 40 steps.

national Conference on Hardware/Software Code-
sign and System Synthesis (CODES+ISSS), pages
1–10, Oct 2016.

[3] A. Banerjee, A. Mondal, A. Sarkar, and S. Biswas.
Real-time embedded systems analysis — from the-
ory to practice. In 2015 19th International Sym-
posium on VLSI Design and Test, pages 1–2, June
2015.

[4] M. V. Woodward and P. J. Mosterman. Challenges
for embedded software development. In 2007 50th
Midwest Symposium on Circuits and Systems, pages
630–633, Aug 2007.

[5] O. Kechagias-Stamatis, N. Aouf, and M.A.
Richardson. High-speed multi-dimensional relative
navigation for uncooperative space objects. Acta
Astronautica, 160:388 – 400, 2019.

[6] Mah Zarei and Seyed Malaek. Motion estimation
of uncooperative space objects: A case of multi-
platform fusion. Advances in Space Research, 08
2018.

[7] Ksenia Klionovska, Jacopo Ventura, Heike Ben-
ninghoff, and Felix Huber. Close range tracking of
an uncooperative target in a sequence of photonic
mixer device (pmd) images. Robotics, 7(1), 2018.

[8] Pingyuan Cui, Xizhen Gao, Shengying Zhu, and
Wei Shao. Visual navigation using edge curve

matching for pinpoint planetary landing. Acta As-
tronautica, 146:171 – 180, 2018.

[9] Thomas Voirin, Jeff Delaune, Guy Le Besnerais,
Jean-Loup Farges, Clément Bourdarias, and Hans
Krueger. Challenges of pinpoint landing for plan-
etary exploration : The lion absolute vision-based
navigation system step-wise validation approach. In
Conference: International Planetary Probes Work-
shop 10, 06 2013.

[10] Shuang Li, Pingyuan Cui, and Hutao Cui. Vision-
aided inertial navigation for pinpoint planetary
landing. Aerospace Science and Technology,
11(6):499 – 506, 2007.

[11] P. Ghiglino, J. L. Forshaw, and V. J. Lappas. Oq-
tal: Optimal quaternion tracking using attitude error
linearization. IEEE Transactions on Aerospace and
Electronic Systems, 51(4):2715–2731, Oct 2015.

[12] Toru Baji. Evolution of the gpu device widely used
in ai and massive parallel processing. In 2018 IEEE
2nd Electron Devices Technology and Manufactur-
ing Conference (EDTM), pages 7–9, 2018.

[13] Ahmad Shawahna, Sadiq M. Sait, and Aiman El-
Maleh. Fpga-based accelerators of deep learning
networks for learning and classification: A review.
IEEE Access, 7:7823–7859, 2019.

[14] Haidong Lan, Jintao Meng, Christian Hundt, Bertil



Figure 11. CPU for 50 multiplication steps. Figure 12. Data throughput for 50 steps.

Figure 13. Novel AI pipelining approach

Schmidt, Minwen Deng, Xiaoning Wang, Weiguo
Liu, Yu Qiao, and Shengzhong Feng. Feather-
cnn: Fast inference computation with tensorgemm
on arm architectures. IEEE Transactions on Paral-
lel and Distributed Systems, 31(3):580–594, 2020.

[15] L. Dagum and R. Menon. Openmp: an in-
dustry standard api for shared-memory program-
ming. IEEE Computational Science and Engineer-
ing, 5(1):46–55, 1998.

[16] Sunil Shukla, Bruce Fleischer, Matthew Ziegler,
Joel Silberman, Jinwook Oh, Vijayalakshmi Srini-
vasan, Jungwook Choi, Silvia Mueller, Ankur
Agrawal, Tina Babinsky, Nianzheng Cao, Chia-Yu
Chen, Pierce Chuang, Thomas Fox, George Grist-
ede, Michael Guillorn, Howard Haynie, Michael
Klaiber, Dongsoo Lee, Shih-Hsien Lo, Gary Maier,
Michael Scheuermann, Swagath Venkataramani,
Christos Vezyrtzis, Naigang Wang, Fanchieh Yee,
Ching Zhou, Pong-Fei Lu, Brian Curran, Leland
Chang, and Kailash Gopalakrishnan. A scalable
multi-teraops core for ai training and inference.
IEEE Solid-State Circuits Letters, 1(12):217–220,
2018.

[17] Geoffrey Biggs, Noriaki Ando, and Tetsuo Kotoku.
Rapid data processing pipeline development using
openrtm-aist. In 2011 IEEE/SICE International
Symposium on System Integration (SII), pages 312–
317, 2011.

[18] K. Sravani and Rathnamala Rao. High throughput
and high capacity asynchronous pipeline using hy-
brid logic. In 2017 International Conference on

Innovations in Electronics, Signal Processing and
Communication (IESC), pages 11–15, 2017.

[19] P. Ghiglino and M. Harshe. A deterministic and
high performance parallel data processing approach
to increase guidance navigation and control robust-
ness. In 2020 IAF SPACE SYSTEMS SYMPOSIUM
(IAC), 2020.


