Barcelona Supercomputing Center Centro Nacional de Supercomputación

OBPMark (On-Board Processing Benchmarks) – Open Source Computational Performance Benchmarks for Space Applications

David Steenari¹, Leonidas Kosmidis^{2,3}, Ivan Rodriguez-Ferrandez^{3,2}, Alvaro Jover-Alvarez^{3,2}, Kyra Förster¹

¹ ESA/ESTEC

² Barcelona Supercomputing Center (BSC)

³ Universitat Politècnica de Catalunya (UPC)

OBPMark Overview

- OBPMark ("On-Board Processing Benchmarks") is set a computational performance benchmarks for space applications
- It is currently under development by ESA and BSC/UPC
 - A private beta version currently available **beta repository now open**
 - Early usage in a number of ESA activities
- Funding through the GPU4S activity (see previous presentation)
 - Builds on several lessons-learned from **GPU4S Bench**
 - Next phase of activity will focus on the finalization of OBPMark
- OBPMark and GPU4S Bench are provided together
 - GPU4S Bench focuses on benchmarking of parellelised processing building blocks
 - OBPMark focuses on application level benchmarks for space
 - OBPMark applications reuse optimized GPU4S Bench building blocks
 - Porting GPU4S algorithms can be the starting point for new architecture ports

OBPMark (On-Board Processing Benchmarks) – Open Source Computational Performance Benchmarks for Space Applications

BACKGROUND AND MOTIVATION

David Steenari | 15/06/2021 | Slide 3

| = 11 ▶ :: ■ + 11 ■ ≝ = 11 11 = = :: ₩ → 0 11 = :: ₩ ₩

Background

• Traditionally, processing in space has been dominated by single core CPUs and DSPs; FPGAs and dedicated ASICs

• But as of late, several new device classes have been introduced for on-board applications, driven by influx of COTS components and need for flexible processing:

Multicore processors (GR740, LS1046); MPSoCs (ZynqUS+, NG-ULTRA, Cyclone-V); array processors (HPDP); many core DSPs (RC64, MPPA); GPUs (NVIDIA, AMD); VPUs (Myriad)

 → See also presentation tomorrow (16th of June) at 13:00:
 "Survey of High-Performance Processors and FPGAs for On-Board Processing and Machine Learning Applications"

- Different device classes increase the difficulty for easily and accurately comparing computational performance in key on-board processing applications
- Lack of openly available benchmarks for space applications identified during GPU4S study (ESA GSP activity)

Benchmarking Challenges

- Difficult to determine which are the most performant and efficient processing systems, due to:
 - Lack of benchmarking data in all device categories (CPUs, GPUs, VPU, FPGAs, etc.)
 - Lack of standardized tests (standard only targeting CPUs or OpenCL compliant)
 - Operations/s (FLOPS, GMACs) do not give the whole picture. Neither do synthetic benchmarks
- Commercial benchmarks mostly cover application-specific benchmarks or dependent on software implementation for single/multicore CPUs
 - E.g. Dhrystone, CoreMark, SPEC, PARSEC (multi-threaded programs), NAS (parallel)
 - ADASMark and MLPerf etc
- Commercial benchmarks are not fully usable for space:
 - Performance per power metric not included
 - Tasks not representative of on-board processing (hyperspectral, radar, etc.)
 - FPGAs not considered, high level of parallelization not considered
 - Not easily portable to all devices (FPGAs, HPDP, RC64, Kalray, etc.) or heterogeneous systems
- GPU4S Bench \rightarrow step in right direction (open, reproducible) covers processing building blocks
- Need for a set of application benchmarks that cover "most" typical OBP and is openly available

OBPMark (On-Board Processing Benchmarks) – Open Source Computational Performance Benchmarks for Space Applications

OBPMARK DESCRIPTION

David Steenari | 15/06/2021 | Slide 6

OBPMark Objectives

- To promote a standard set of **application-level benchmarks**, as to enable a method of comparing enduser performance of different devices and systems – such as both RHBD and COTS processors, FPGAs and ASICs
- To better understand **limitations of different types of devices and systems** and to quickly decide on division task in hardware and software for implementations in heterogeneous systems
- To **identify new (COTS) components and architectures** that have a exceptional performance for specific processing applications
- To allow ESA to quickly **provide recommendations for processing systems in future missions**, through identifying key parameters together with the project teams
- Benchmark standard on-board processing functions, so that implementers will have the possibility for reusing the **invested work in real-world use cases**

David Steenari | 15/06/2021 | Slide 7

· = ■ ► = = + ■ + ■ = ≔ = ■ ■ ■ = = = ■ ■ ■ ■ = = = ₩ ■

OBPMark Requirements Overview

- Coverage:
 - ...shall cover common OBP applications: image processing, compression, radar processing, encryption, common building blocks (for radar, radiometry, SDR, etc) and machine learning
 - ...shall allow to add future benchmarks (through version update).
- Comparable:
 - ...ensure identical output among different implementations
 - ...shall provide comparable results for: overall performance, performance / power, absolute power.
 - ...shall provide all necessary configuration parameters and test data, including golden reference output.
- Portable:
 - ...shall be written in standard C.
 - ...shall support standard parallelization schemes: OpenMP, OpenCL and CUDA (and new ones in future releases)
 - ...shall be possible to port to FPGA implementations*.
- Openness:
 - ...shall be openly available (open-source license, open repository)
 - ...shall be open for community response/feedback
 - ...shall be open for community contributions (porting etc.)

David Steenari | 15/06/2021 | Slide 8

OBPMark Components

- OBPMark has the following components:
 - 1. A Technical Note (TN) defining the benchmark algorithms and parameters, and defines a result reporting template
 - 2. Reference input and output data for verification
 - 3. Reference implementations in standard C-code, and standard parallelisation schemes: OpenMP, OpenCL and CUDA
 - 4. A database of reported test results

· _ II 🛌 :: 🖛 + II 💻 들 🚍 II II 🚍 🚍 :: 🖬 🖬 II 🚍 :I II 💥 🧯

OBPMark Benchmark Lists for V1.0

ID	Benchmark Name	Sub ID	Sub-Benchmark Name	Status
#1	Image Processing	#1.1	Image Calibration and Correction	Done
		#1.2	Radar Image Processing	TBD. GPU4S CCN2
#2	Standard Compression Algorithms	#2.1	CCSDS 121.0 Data Compression	Done
		#2.2	CCSDS 122.0 Image Compression	Done
		#2.3	CCSDS 123.0 Hyperspectral Image Compression	On-going
#3	Standard Encryption Algorithms	#4.1	AES128	TBD. GPU4S CCN2
#4	Common Processing Building Blocks	#5.1	FIR Filter	Done
		#5.2	FFT Processing	Done
		#5.3	Convolutional Filter	Done
		#5.4	Matrix Multiplication	Done
#5	Machine Learning Inference	#6.1	Object detection	TBD. GPU4S CCN2
		#6.2	Cloud screening	TBD. GPU4S CCN2

David Steenari | 15/06/2021 | Slide 10

1+1

Benchmark #1: Image Processing

- On-board image processing is a typical on-board application for Science and EO
- Two sub-benchmarks defined

Offset Bad Pixel Radiation Gain Spatial Temporal Correction Correction Scrubbing Correction Binnina

- #1.1 Image Calibration and Correction #1.2 Radar Image Processing
- #1.1 is based on typical processing performed in ESA science optical payloads with long exposure times
- #1.2 is based on the range-Doppler algorithm
 - Reconstruction of radar images on-board can enable additional on-board processing applications

David Steenari | 15/06/2021 | Slide 11

Binning

Benchmark #2: Standard Compression

- CCSDS compression algorithms are widely used on ESA (and NASA) missions
- Currently three standards available: CCSDS 121.0-B-3 Lossless Data Compression; CCSDS 122.0-B-2 Image Data Compression; CCSDS 123.0-B-2 Low-Complexity Lossless and Near-Lossless Multispectral and Hyperspectral Image Compression
- The throughput of each of the algorithms depends on multiple compression settings
 - In particular the CCSDS 123 has many dozens of parameters
 - Performance and throughput of two implementations cannot be compared fairly unless the same parameters and data are used
- Three sub-benchmarks defined:

#2.1 CCSDS 121.0 Data Compression#2.2 CCSDS 122.0 Image Compression#2.3 CCSDS 123.0 Hyperspectral Compression

- Existing compressor implementations can be benchmarked using the provided input and output verification data; and configuring the specified compressor parameter settings
- New implementations can be reused for future payload applications

Benchmark #3: Standard Encryption

- On-board encryption used for sensitive data, in particular in commercial applications
- Currently one encryption benchmark defined, choice based on existing space standard:

CCSDS 352.0-B-2, CCSDS Cryptographic Algorithms

- ... which uses the well-known AES encryption standard
- Benchmark #3.1 defines guidelines for benchmarking of AES and provides input and output data for verification
- Several key-lengths defined: 128-bit, 192-bit, 256-bit
- Performance parameters include: samples/s and samples/s/W
- Implementations can be reused in on-board applications

Benchmark #4: Building Blocks

- To increase coverage of application cases to several signal processing applications that were so far too complex to include in their entirety (SDR processing, sounders, radiometry) it was decided to include a number of reoccurring processing building blocks
- Four sub-benchmarks specified:
 - #4.1 FIR filter
 - #4.2 FFT
 - #4.3 Convolution Kernel
 - #4.4 Matrix Multiplication
- Based on implementations provided in the GPU4S Bench
 - In fact, mostly identical to GPU4S implementation
- Well-known algorithms with extensive usage for other benchmarking fields
 - e.g. matrix multiplication is often used in non-space related benchmarks for parallel processors
 - also sometimes used to measure errors in processors/GPUs during radiation testing

David Steenari | 15/06/2021 | Slide 14

= 11 🛌 == + 11 == 🚝 == 11 11 == == 🚝 🛶 🔯 11 == == 13 🖽 💥 🛀

Benchmark #5: Machine Learning

- Survey performed of openly available annotated / labeled training data sets for machine learning applications
 - Survey also included possible standard CNN architectures that could be applied
- Two sub-benchmarks tentatively defined:
 - #5.1 Object detection
 - #5.2 Cloud screening
- Object detection tentatively to target ship (or airplane) detection
- Cloud screening a common application, lately using machine learning (see e.g. Φsat-1 and CHIME)
- Approach
 - To use standard models (e.g. SSD MobileNetv2 for object detection)
 - Provide pre-quantized models in standard formats (TF, TFLite, etc.) for different data types (INT8, INT16, FP16, FP32)
 - Training data openly available (if re-training is required to support specific platforms)
- Implementation work to be covered in CCN2 of GPU4S workshop planed to finalise benchmarks' definition
- In parallel: on-going ESA (GSTP) activities on ML benchmarking on several devices see next presentation:
 "Machine Learning Application Benchmark for satellite on-board data processing", Max Ghiglione, ADS
- On-going effort to coordinate and harmonize ML performance benchmarks

David Steenari | 15/06/2021 | Slide 15

= 11 🛌 == ++ 11 == 🚝 == 11 11 == == 🖂 🖬 🖬 🖬 == 🛤 🐜 🗯

Possible Future Benchmark Additions

- OBPMark is designed to allow expansion with additional benchmarks
- Possible future extensions include (pending availability and community feedback):
 - 1. Video encoding / compression
 - Video compression is currently being studied in ESA activities, i.e. evaluation of JPEG and H.264/H.265 standards
 - Possible future standardization of recommendation of video encoding in space
 - 2. Additional compressors e.g. SAR compressor currently under standardization
 - 3. Additional ML/AI benchmarks
 - Expand scope outside of Convolutional Neural Networks (CNNs), with other methods as they evolve (e.g. RNNs, SNNs, etc.)
 - 4. AOCS/GNC processing and/or visual-based navigation
 - 5. Full SDR processing chain, e.g. DVB-S2 encoding/decoding

OBPMark Availability

- Both OBPMark and GPU4S Bench are available on the public git repositories
 - See <u>OBPMark.org</u> for more information
 - Currently in **beta mode**, seeking community feedback from early adopters
- Benchmarks already available:
 - #1.1 Image Calibration and Correction
 - #2.1 CCSDS 121.0 Data Compression
 - #2.2 CCSDS 122.0 Image Compression
 - #4.1 FIR filter
 - #4.2 FFT
 - #4.3 Convolution Kernel
 - #4.4 Matrix Multiplication
- Additional benchmarks will be added during 2021, throughout progress of next phase
- Full version to be released by end of 2021
- Want to start benchmarking? Get in contact <u>OBPMark@esa.int</u>
- Next slides some selected benchmark results from BSC/UPC (targeting GPU SoCs)

David Steenari | 15/06/2021 | Slide 17

•

Benchmark #1.1 Image Calibration and Correction -Performance / Throughput

David Steenari | 15/06/2021 | Slide 18

Benchmark #1.1 Image Calibration and Correction – Energy Efficiency

TX2 and Hikey970 in OBPMark #1.1

- Benchmark details:
 - Random images
 - TX2: CUDA
 - 15W TDP mode
 - Energy efficiency computed with measured power consumption
 - Hikey970: OpenCL
 - 15W Mode
 - Energy efficiency computed with measured power consumption (only OpenCL)
 - OpenMP Cores: 4
 - Tested with different image sizes

David Steenari | 15/06/2021 | Slide 19

•

· _ II 🕨 :: 🖛 + II 💻 🔚 _ II II _ _ _ _ II = II 🗰 🖬 II _ II 💥 🖕

Benchmark #2.1 CCSDS 121.0 Data Compression – Performance / Throughput

Xavier and V1605B in CCSDS 121.0

- Benchmark details:
 - Xavier: CUDA
 - 15W TDP Mode
 - V1605B: OpenCL
 - ~15W Mode
 - OpenMP Cores: 4
 - Tested with 16MB random input divided in 1024 steps with 256 sample intervals for different Block Sizes J (16, 32 and 64)

David Steenari | 15/06/2021 | Slide 20

•

Benchmark #2.2 CCSDS 122.0 Image Compression – Performance / Throughput

Xavier and V1605B in CCSDS 122

David Steenari | 15/06/2021 | Slide 21

□ II ▶ II ■ + II ■ ⊆ □ II II □ □ □ H → II □ H

Benchmark #2.2 CCSDS 122.0 Image Compression – Energy Efficiency

CCSDS 122 Energy efficiency

OBPMark Summary

- A lack of openly available performance general and reusable benchmarks for **space** applications has been identified
- Currently benchmarks are **application-specific and (often) closed source**.
- The number of **different devices used for processing** on-board spacecraft is increasing, making accurate comparison of computational performances difficult
- A new set of Open Source Computational Performance Benchmarks for Space Applications is proposed: **"OBPMark (On-Board Processing Benchmarks)**"
- Provided as complementary with GPU4S Bench
- **Beta version** is available on the repository community feedback is welcome
- Interested implementers are encouraged to get in contact

OBPMark (On-Board Processing Benchmarks) – Open Source Computational Performance Benchmarks for Space Applications

THANK YOU FOR YOUR ATTENTION!

Contact: <u>OBPMark@esa.int</u>

Author: David.Steenari@esa.int

David Steenari | 15/06/2021 | Slide 24

□ II ≥ II = + II = ≥ □ II II = □ H = 0 II = II H = 0 H