J. Indian Chem. Soc., Vol. 95, July 2018, pp. 751-758

Acyclic diaminocarbene complexes of palladium obtained by intermolecular hydroamination of a metal bound isonitrile moiety using secondary amines

Chandan Singh^a, A. P. Prakasham^a, Manoj Kumar Gangwar^a, Raymond J. Butcher^b and Prasenjit Ghosh^{*a}

^aDepartment of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400 076, India

E-mail: pghosh@chem.iitb.ac.in Fax: 91-22-25723480

^bDepartment of Chemistry, Howard University, Washington DC 20059, USA

Manuscript received 28 June 2018, accepted 11 July 2018

A series of palladium complexes supported over acyclic diaminocarbene (ADC) ligands were conveniently obtained by the hydroamination of a metal bound isonitrile moiety. In particular, the hydroamination reaction using various secondary amines namely, pyrrolidine, morpholine and piperidene on a palladium isonitrile derivative, cis-[(2,6-*i*-Pr₂C₆H₃)NC]₂PdCl₂, yielded the desired palladium acyclic diaminocarbene (ADC) complexes of the type, cis-[(R¹NH)(R²)methylidene]PdCl₂(CNR¹) [R¹ = 2,6-*i*-Pr₂C₆H₃: R² = NC₄H₈ (1); NC₄H₈O (2); NC₅H₁₀ (3)], under ambient reaction conditions in moderate to good yields (*ca.* 68–73%). The structural characterization of the palladium complexes (1-3) attested to the formation of the metal bound acyclic diaminocarbene ligand via an intermolecular hydroamination reaction on the metal bound isonitrile moiety in a palladium precursor complex.

Keywords: Palladium, acyclic diaminocarbene complexes (ADCs), isonitrile, hydroamination, secondary amines.

Introduction

Altogether as a ligand, the acyclic diaminocarbenes (ADCs)^{1–4}, with greater conformational flexibility, offer a new perspective to the horizons of the N-heterocyclic carbene mediated homogeneous catalysis^{5–7}. In this context a systematic comparison of the acyclic diaminocarbenes with the much renowned N-heterocyclic carbenes⁸⁻¹² with similar steric and electronic requirements arise interest¹³. For example, the N-heterocyclic carbene based catalyst, {trans-(1,3-Me₂-imidazolin-2-ylidene)Pd(PPh₃)₂Cl}PF₆, exhibited 84% yield for the amination reaction of bromobenzene with morpholine whereas the acyclic diaminocarbene counterpart, {trans-(Me₂N)methylidene(Me₂N)Pd(PPh₃)₂Cl}PF₆, showed slightly higher yield of 89% under analogues conditions at 1 mol% of the catalyst loading¹³. The conformational flexibility of the N-substituents of the acyclic diaminocarbenes (ADC) allow for suitable encapsulation of the active sites bearing metal center facilitating the catalysis¹⁴⁻²⁰. Subscribing to this viewpoint, we decided to explore the chemistry of transition metal acyclic diaminocarbene complexes, particularly from the perspective of obtaining a comparison with the more successful imidazole derived N-heterocyclic carbene ligands in homogeneous catalysis.

With our interest primarily lying in biomedical applications^{21–23} as well as in chemical catalyses^{24–27} using transition metal N-heterocyclic carbene ligands of varying motifs namely, imidazole derived N-heterocyclic carbenes^{28–36}, triazole derived N-heterocyclic carbenes^{37–41}, abnormal Nheterocyclic carbenes^{42–44}, oxazolidine-fused N-heterocyclic carbenes⁴⁵, tricyclic triazolooxazine based N-heterocyclic carbenes⁴⁶, six-membered saturated N-heterocyclic carbenes⁴⁷ and acyclic diaminocarbene complexes⁴⁸, we set out to synthesize palladium complexes of acyclic diaminocarbenes (ADC) for their potential utility in homogeneous catalysis.

Results and discussion

A new series of acyclic diaminocarbene ligands namely, $[(R^1NH)(R^2)$ methylidene] $[R^1 = 2,6$ -*i*-Pr₂C₆H₃: $R^2 = NC_4H_8$; NC_4H_8O ; $NC_5H_{10}]$ were generated on metal platform by intermolecular hydroamination reaction using secondary amines on the C=N bonds of a metal bound isonitrile precursor complex. Specifically, the reaction of secondary amines namely, pyrrolidine, morpholine and piperidine, with *cis*-[(2,6 *i*-Pr₂C₆H₃)NC]₂PdCl₂ gave the corresponding palladium acyclic diaminocarbene complexes of the formula *cis*- $[(R^1NH)(R^2)$ methylidene]PdCl₂(CNR¹) {R¹ = 2,6-*i*-Pr₂C₆H₃: R² = NC₄H₈ (**1**); NC₄H₈O (**2**); NC₅H₁₀ (**3**)} in moderate to good yields (*ca.* 68–73%) as shown in Scheme 1. coordinated $\nu_{(C\equiv N)}$ stretching bands appearing at 2189 cm^{-1} (1), 2191 cm^{-1} (2) and 2189 cm^{-1} (3).

Quite interestingly the ¹H NMR spectra of the (1-3) com-

Scheme 1. Strategy for the synthesis of the palladium (1-3) acyclic diaminocarbene complexes.

The ¹³C NMR spectra of the palladium (1-3) complexes showed the metal bound Pd-C_{CNR} resonances at 122.8 ppm (1), 123.0 ppm (2) and 123.7 ppm (3) and the Pd-C_{Carbene} resonances at 177.0 ppm (1), 178.6 ppm (2) and 176.6 ppm (3), in agreement with the formation of acyclic diaminocarbene ligands by the intermolecular N-H hydroamination of one of the two metal bound isonitrile moiety with the other one remaining coordinated to the metal center. Further corroboration came from the infrared spectrum that showed the presence of metal bound isonitrile moiety as observed by metal plexes, showed that, while the compound (1) existed in two isomeric form in the solution (Fig. 1)¹⁴, the compound (2) and (3) existed as single isomers. Additionally, the observation of six different sets of methyl resonances for the 2,6-*i*- $Pr_2C_6H_3$ group appearing as doublets suggested the inequivalency of the two isopropylphenyl moieties possibly due to restricted rotational freedom. The ¹³C NMR signals too supported similar viewpoint as observed from the twelve sets of different aromatic resonances for the (1-3) complexes.

With the intent of gaining an insight on the pathway of

Fig. 1. Conformational syn-1/anti-1 rotamers of complex 1.

formation of the acyclic diaminocarbene ligand by an intermolecular N-H hydroamination reaction on a metal bound C=N isonitrile precursor *cis*-[(2,6-*i*-Pr₂C₆H₃)NC]₂PdCl₂, we set out to structurally characterize the palladium isonitrile precursor, to see the geometric isomeric form it existed in⁴⁹. It is worth noting that despite the synthesis of the *cis*-[(2,6-*i*-Pr₂C₆H₃)NC]₂PdCl₂ complex have been reported earlier^{14, 50}, the structural characterization of the same has not been done. As expected of a *d*⁸ configuration, the palladium center in the complex *cis*-[(2,6-*i*-Pr₂C₆H₃)NC]₂PdCl₂ exhibited square planar geometry as shown in Fig. 2. Indeed, the molecular structure of the *cis*-(2,6-*i*-Pr₂C₆H₃)NC]₂PdCl₂ complex showed the *cis*-disposition of the 2,6-*i*-Pr₂C₆H₃ moiety with the acyclic diaminocarbene ligand and also between the two chloride moieties around the palladium center.

Fig. 2. ORTEP of *cis*-[(2,6-*i*-Pr₂C₆H₃)NC]₂PdCl₂, with thermal ellipsoids drawn at 50% probability level. Selected bond length (Å) and bond angle (°): Pd1-C1 1.955(3), Pd1-C14 1.940(3), Pd1-Cl2 2.3016(10), Pd1-Cl1 2.3130(10), C1-N1 1.139(4), C14-N2 1.144(4), Cl2-Pd1-Cl1 91.96(4), C1-Pd1-Cl2 178.48(9), C1-Pd1-Cl1 87.21(10), C14-Pd1-Cl2 86.37(9), C14-Pd1-Cl1 175.88(9), C14-Pd1-C1 94.37(13), N1-C1-Pd1 175.2(3), N2-C14-Pd1 173.1(3).

The Pd-C_{CNR} bond distances of 1.955(3) Å and 1.940(3) Å in the *cis*-[(2,6-*i*-Pr₂C₆H₃)NC]₂PdCl₂ complex are slightly shorter than the sum of individual radii of palladium and carbon (C_{sp}) (2.08 Å)⁵¹ but compare well with the related com-

plexes namely, cis-[(C₆H₅)NC]₂PdCl₂ [1.936(3) Å and 1.929(3) Å]⁵², *cis*-[(4-CF₃C₆H₄)NC]₂PdCl₂ [1.939(2) Å and 1.933(3) Å]⁵², *cis*-[(4-FČ₆H₄)NC]₂PdCl₂ [1.941(9) Å and 1.932(9) Å]⁵², *cis*-[(4-CH₃C₆H₄)NC]₂PdCl₂ [1.938(4) Å and 1.934(5) Å]⁵², *cis*-[(4-OMeC₆H₄)NC]₂PdCl₂ [1.949(2) Å and 1.923(2) Å]⁵² and cis-[(2,6-Me₂C₆H₃)NC]₂PdCl₂ [1.9333(14) Å and 1.9307(13) Å]⁵². Similarly, the Pd-Cl bond distances of 2.3130(10) Å and 2.3016(10) Å in the cis-[(2,6-i-Pr₂C₆H₃)NC]₂PdCl₂ complex compare well with its related analogues namely, cis-[(C₆H₅)NC]₂PdCl₂ [2.3086(7) Å and $2.2942(7) \text{ Å}]^{52}$, cis-[(4-CF₃C₆H₄)NC]₂PdCl₂ [2.3091(6) Å and 2.3081(6) Å]⁵², cis-[(4-FC₆H₄)NC]₂PdCl₂ [2.312(2) Å and 2.303(2) Å]⁵², *cis*-[(4-CH₃C₆H₄)NC]₂PdCl₂[2.3086(11) Å and 2.3016(11) Å]⁵², *cis*-[(4-OMeC₆H₄)NC]₂PdCl₂ [2.3131(5) Å and 2.3119(5) Å]⁵² and *cis*-[(2,6-Me₂C₆H₃)NC]₂PdCl₂ [2.3097(3) Å and 2.3063(3) Å]⁵².

The structural characterization of the subsequent palladium acyclic diaminocarbene complexes namely, cis- $[(R^1NH)(R^2)$ methylidene]PdCl₂(CNR¹) {R¹ = 2,6-*i*-Pr₂C₆H₃: $R^2 = NC_4H_8$ (1); NC_4H_8O (2); NC_5H_{10} (3)} indeed showed their monomeric nature with the palladium center in a square planar geometry with one site occupied by an acyclic diaminocarbene moiety and the other sites by a metal based isonitrile moiety and two chloride moieties in a cis-disposition to each other as shown in Figs. (3-5). Of particular interest is the Pd-C_{Carbene} distances of 1.9910(15) Å (1), 2.006(4) Å (2), 2.003(6) Å (3) are shorter than the sum of individual palladium and carbon (C_{sp^2}) (2.12 Å)⁵¹ but well compared with those of the related analogues namely, *cis*- $[(R^{1}NH)(R^{2})$ methylidene] PdCl₂(CNR¹) $[R^{1} = 2,6-(CH_{3})_{2}C_{6}H_{3}:$ $R^2 = 2,6-(CH_3)_2C_6H_3NH; 2.003 (7) Å^{53}; R^1 = C_6H_{11}: R^2 =$ $Ph_2C=N-NH;$ 1.966(3) Å⁵⁴; $R^1 = 2,6-(CH_3)_2C_6H_3$: $R^2 = 5 (NH_2)C_6H_4NH$, 1.979(3) Å¹⁸; R¹ = t-Bu: R^2 = Ph₂CNH, 1.994(3) Å]¹⁹. The Pd-Cl bond distances of 2.3747(4) Å and 2.3130(5) (1), 2.3798(10) Å and 2.2989(9) (2), 2.3865(16) Å and 2.3157(16) (3) are also in agreement with that observed in the related once reported in literature^{18,19,53,54}.

The observation of a longer Pd-Cl bond located *trans* to the acyclic diaminocarbene (ADC) ligand [(R¹NH)(R²) methylidene] [R¹ = 2,6-*i*-Pr₂C₆H₃: R² = NC₄H₈; NC₄H₈O; NC₅H₁₀], as compared to the Pd-Cl bond located *trans* to the di-*i*-propylphenyl isonitrile ligand in the complexes **1** [2.3747(4) Å, 2.3130(5) Å], **2** [2.3798(10) Å, 2.2989(9) Å] and **3** [2.3865(16) Å, 2.3157(16) Å], indicated stronger *trans*

Fig. 3. ORTEP of 1 with thermal ellipsoids drawn at 50% probability level. Selected bond length (Å) and bond angle (°): Pd–C18 1.926(17), Pd-C13 1.991(15), Pd-Cl1 2.313(5), Pd-Cl2 2.374(4), N1-C13 1.332(2), N2-C13 1.322(2), N3-C18 1.147(2), C18-Pd-Cl3 90.82(6), C18-Pd-Cl1 172.12(5), C13-Pd-Cl1 86.73(5), C18-Pd-Cl2 90.02(5), C13-Pd-Cl2 178.90(5), N2-C13-N1 118.36(14), N2-C13-Pd 119.35(11), N1-C13-Pd 122.26(12).

effect of the acyclic diaminocarbene (ADC) ligand, similar to what has been observed in other related complexes namely, *cis*-[(R¹NH)(R²)methylidene]PdCl₂(CNR¹) [R¹ = 2,6-(CH₃)₂C₆H₃: R² = 2,6-(CH₃)₂C₆H₃NH, 2.3838(18) Å, 2.316(2) Å⁵³; R¹ = C₆H₁₁: R² = Ph₂C=N-NH, 2.3671(17) Å, 2.3232(7) Å⁵⁴; R¹ = 2,6-(CH₃)₂C₆H₃: R² = 5-(NH₂)C₆H₄NH, 2.3843(7) Å, 2.3289(8) Å¹⁸; R¹ = *t*-Bu: R² = Ph₂CNH, 2.3698(8) Å, 2.3241(8) Å]¹⁹.

A careful scrutiny of the molecular structure of (1-3) complexes reveal near equal C=N bond lengths [(1 N2-C13 1.332(2) Å, N1-C13 1.322(2) Å); 2 (N1c-C13c 1.337(4) Å, N2c-C13c 1.320(5) Å); 3 (N1a-Ca 1.323(7) Å, N2a-C13a 1.320(7) Å)] which falls between a C-N single bond (1.469 Å) in amine⁵⁵ and the C=N double bond length (1.279 Å) in imines⁵⁵.

In summary, a series of palladium complexes of acyclic diaminocarbene ligands have been conveniently synthesized by intermolecular N-H hydroamination reaction of metal bound $C \equiv N$ isonitrile species under ambient condition in moderate to good yields. The structural characterization of the palladium (1-3) complexes reveal their discrete monomeric nature displaying the palladium center in a square planar environment.

Fig. 4. ORTEP of 2 with thermal ellipsoids drawn at 50% probability level. Selected bond length (Å) and bond angle (°): Pd1C-C13C 2.005(4), Pd1C-CI1C 2.3800(10), Pd1C-CI2C 2.3080(9), N1C-C13C 1.337(4), N2C-C13C 1.320(5), N1C-H1CA 0.8800, N2C-C13C-N1C 118.2(3), C13C-Pd1C-CI1C 176.89(10), C15C-O1C-C16C 110.6(3).

Experimental

General procedures:

All manipulations were carried out using of a glovebox and standard Schlenk techniques. PdCl₂ was purchased from SD-fine Chemicals (India), pyrrolidine, piperidine, and morpholine were purchased from Spectrochem Pvt. Ltd. (India) and used without any further purification. cis-[(2,6-i-Pr₂C₆H₃)NC]₂PdCl₂^{14,50}, was synthesized by known literature procedures. ¹H and ¹³C{¹H} NMR spectra were recorded on a Bruker 400 MHz and 500 MHz NMR spectrometer. ¹H NMR peaks are labeled as singlet (s), doublet (d), triplet (t), quartet of doublet (qd) and septet (sept). Infrared spectra were recorded on a Perkin-Elmer Spectrum One FT-IR spectrometer. Mass spectrometry measurements were done on a Micromass Q-Tof spectrometer and Bruker Maxis impact. Elemental analysis was carried out on Thermo Quest FLASH 1112 SERIES (CHNS) Elemental Analyzer. The X-ray diffraction data were collected on Rigaku Hg 724+ diffractometer and refined by fullmatrix least-squares procedures on F^2 with Singh et al.: Acyclic diaminocarbene complexes of palladium obtained by intermolecular hydroamination etc.

Fig. 5. ORTEP of 3 with thermal ellipsoids drawn at 50% probability level. Selected bond length (Å) and bond angle (°): Pd1A-C13A 2.022(6), Pd1A-Cl1A2.3878(18), Pd1A-Cl2A2.3112(17), N1A-C13A 1.323(7), N2A-C13A 1.320(7), N1A-H1AA 0.8800, N2A-C13A-N1A 119.8(6), C13A-N1A-H1AA 118.0, C13A-Pd1A-Cl1A 174.75(16), Cl2A-Pd1A-Cl1A 94.46(6).

SHELXTL (Version 6.10). CCDC 1435625 {*cis*-[(2,6-*i*- $Pr_2C_6H_3$)NC]_2PdCl_2}, 918897 (1), 939566 (2) and 942019 (3), contain the supplementary crystallographic data for this paper (Supporting information). These data can be obtained free of charge from the Cambridge Crystallographic Data center via www.ccdc.cam.ac.uk/data_request/cif.

Synthesis of cis-[((2,6-di-i-propylphenylamino)(pyrrolidin-1-yl)methylidene)]PdCl₂(2,6-di-i-propylphenylisonitrile) (1)

To a solution of *cis*-[PdCl₂(2,6-di-*i*-propylphenyl isonitrile)₂] (0.311 g, 0.563 mmol) in THF (*ca.* 10 mL), pyrrolidine (0.040 g, 0.563 mmol) was added at 0°C. The reaction mixture was stirred overnight at room temperature, after which the solvent was removed under vacuum. The residue was purified by column chromatography using silica gel as a stationary phase and by eluting with a mixed medium, CH_2Cl_2/CH_3OH (99/1 v/v) to give pure product as a yellow solid (0.238 g, 68%). Isomer (*major*). ¹H NMR (CDCl₃, 400 MHz, 25°C): δ 7.81 (s, 1H, NH), 7.44 (t, 1H, ³J_{HH} = 8Hz, 2,6-C₆H₃[CH(CH₃)₂]), 7.33 (t, 1H, ³J_{HH} = 8Hz, 2,6-C₆H₃[CH(CH₃)₂]), 7.24 (d, 2H, ${}^{3}J_{HH}$ = 8Hz, 2,6-C₆H₃[CH(CH₃)₂]), 7.13 (d, 2H, ${}^{3}J_{HH} = 8Hz, 2,6-C_{6}H_{3}[CH(CH_{3})_{2}]), 4.41 (br, 2H, NC_{4}H_{8}), 3.35$ (sept, 4H, ${}^{3}J_{HH}$ = 7Hz, 2,6-C₆H₃[CH(CH₃)₂]), 2.69–2.66 (m, 2H, NC₄H₈), 1.90–1.87 (m, 2H, NC₄H₈), 1.79–1.76 (m, 2H, NC_4H_8 , 1.31 (d, 12H, ${}^3J_{HH}$ = 7Hz, 2,6- $C_6H_3[CH(CH_3)_2]$, 1.15 $(d, 6H, {}^{3}J_{HH} = 7Hz, 2, 6-\ddot{C}_{6}H_{3}[CH(CH_{3})_{2}]), 1.09 (d, 6H, {}^{3}J_{HH})$ = 7Hz, 2,6- $C_6H_3[CH(CH_3)_2]$). Isomer (*minor*); ¹H NMR (CDCl₃, 400 MHz, 25°C): 7.37 (t, 1H, ${}^{3}J_{HH}$ = 8Hz, 2,6-C₆H₃ $[CH(CH_3)_2]$, 7.33 (t, 1H, ${}^{3}J_{HH}$ = 8Hz, 2,6-C₆H₃[CH(CH₃)₂]), 7.25 (d, 2H, ${}^{3}J_{HH}$ = 8Hz, 2,6- $C_{6}H_{3}$ [CH(CH₃)₂]), 7.18 (d, 1H, ³J_{HH} = 8Hz, 2,6-C₆H₃[CH(CH₃)₂]), 6.66 (s, 1H, NH), 4.81– 4.75 (m, 2H, NC₄H₈), 4.29–4.25 (m, 2H, NC₄H₈), 3.79–3.61 (m, 2H, NC₄ H_8), 3.12 (sept, 4H, ${}^{3}J_{HH}$ = 7Hz, 2,6-C₆H₃ [CH(CH₃)₂]), 2.31–2.02 (m, 2H, NC₄H₈), 1.31 (d, 12H, ³J_{HH} = 7Hz, 2,6-C₆H₃[CH(CH₃)₂]), 1.24 (d, 6H, ³J_{HH} = 7Hz, 2,6- $C_{6}H_{3}[CH(CH_{3})_{2}]), 1.22$ (d, 6H, ${}^{3}J_{HH} = 7Hz, 2,6-C_{6}H_{3}$ [CH(CH₃)₂]). ¹³C{¹H} NMR (CDCl₃, 100 MHz, 25°C): δ 177.0 (NHCN), 148.6 (2,6-C₆H₃[CH(CH₃)₂]₂), 145.9 (2,6-C₆H₃[CH(CH₃)₂]₂), 145.7 (2,6-C₆H₃[CH(CH₃)₂]₂), 133.9 (2,6-C₆H₃[CH(CH₃)₂]₂), 131.1 (2,6-C₆H₃[CH(CH₃)₂]₂), 130.8 (2,6-C₆H₃[CH(CH₃)₂]₂), 129.8 (2,6-C₆H₃[CH(CH₃)₂]₂), 129.4 (2,6-C₆H₃[CH(CH₃)₂]₂), 123.8 {2×(2,6-C₆H₃[CH(CH₃)₂]₂)}, 123.7 (2,6-C₆H₃[CH(CH₃)₂]₂), 123.5 (2,6-C₆H₃[CH(CH₃)₂]₂), 122.8 $(CN-2,6-C_6H_3[CH(CH_3)_2]_2)$, 58.6 (NC_4H_8) , 50.7 (NC_4H_8) , 30.0 (2,6-C₆H₃[CH(CH₃)₂]₂), 29.7 (2,6-C₆H₃ [CH(CH₃)₂]₂), 29.0 (2,6-C₆H₃[CH(CH₃)₂]₂), 28.8 (2,6-C₆H₃[CH(CH₃)₂]₂), 28.5 (2,6-C₆H₃[CH(CH₃)₂]₂), 26.7 (NC₄H₈), 25.8 (2,6-C₆H₃[CH(CH₃)₂]₂), 25.5 (2,6-C₆H₃ [CH(CH₃)₂]₂), 24.8 (2,6- $C_6H_3[CH(CH_3)_2]_2)$, 24.6 (NC₄H₈), 23.9 (2,6-C₆H₃) [CH(CH₃)₂]₂), 22.9 (2,6-C₆H₃[CH(CH₃)₂]₂), 22.7 (2,6-C₆H₃[CH(CH₃)₂]₂), 22.1 (2,6-C₆H₃[CH(CH₃)₂]₂). IR data (KBr pellet): 3198 (w), 2964 (s), 2874 (w), 2189 (s), 1551 (s), 1463 (m), 801 (m), 750 (m) cm^{-1} . HRMS Calcd. for [C₃₀H₄₃N₃Cl₂Pd-Cl]⁺ 586.2180, Found *m*/z 586.2181. Anal. Calcd. for C₃₀H₄₃Cl₂N₃Pd: C, 57.84; H, 6.96; N, 6.74. Found: C, 57.83; H, 6.85; N, 6.70%.

Synthesis of cis-[((2,6-di-i-propylphenylamino)(morpholino)methylidene)]PdCl₂(2,6-di-i-propylphenylisonitrile) (2)

To a solution of *cis*-PdCl₂(2,6-di-*i*-propylphenyl isonitrile)₂] (0.202 g, 0.366 mmol) in THF (*ca.* 20 mL), morpholine (0.032 g, 0.366 mmol) was added at 0°C. The reaction mixture was stirred overnight at room temperature, after which the solvent was removed under vacuum. The residue was purified by column chromatography using silica gel as a stationary

	Table 1. X-Ray crystallographic	data for complexes <i>cis</i> -[(2,6-	i-Pr ₂ C ₆ H ₃)NCJ ₂ PdCl ₂ , 1 , 2 and 3	
	cis-[(2,6-i-			
	Pr ₂ C ₆ H ₃)NC] ₂ PdCl ₂	1	2	3
Lattice	monoclinic	monoclinic	monoclinic	monoclinic
Formula	C ₂₆ H ₃₄ Cl ₂ N ₂ Pd	C ₃₀ H ₄₃ Cl ₂ N ₃ Pd	C ₃₀ H ₄₃ Cl ₂ N ₃ O ₁ Pd	C ₃₁ H ₄₅ Cl ₂ N ₃ Pd
Formula weight	551.85	622.97	638.97	637.00
Space group	P 1 21/n 1	P21/c	P21/n	P21/n
a (Å)	12.339(4)	11.3366(2)	16.831(3)	16.667(6)
b (Å)	13.369(4)	16.6592(3)	24.229(3)	23.321(8)
c (Å)	15.926(5)	16.4658(3)	16.994(3)	18.126(5)
α (°)	90.00	90.00	90.00	90.00
β (°)	91.247(6)	97.887(2)	117.404(2)	117.28(2)
γ (°)	90.00	90.00	90.00	90.00
V (Å ³)	2626.5(14)	3080.29(10)	6152.4(17)	6262(4)
Z	4	4	8	8
Temperature (K)	150(2)	296(2)	100(2)	100(2)
Radiation (λ, Å)	0.7107	0.71073	0.71073	0.71075
ho (calcd.) (g cm ⁻³)	1.396	1.343	1.380	1.351
μ (Mo K $lpha$) mm ⁻¹	0.925	0.798	0.803	0.787
θ max (deg.)	25.00	32.7436	25.25	25.00
No. of parameters	278	362	583	659
<i>R</i> ₁	0.0363	0.0403	0.0470	0.0719
wR ₂	0.0820	0.0795	0.1246	0.1644
GOF	1.058	1.166	1.138	1.259

J. Indian Chem. Soc., Vol. 95, July 2018

phase and by eluting with a mixed medium, CH₂Cl₂/CH₃OH (99/1 v/v) to give pure product as a yellow solid (0.172 g, 73%). ¹H NMR (CDCl₃, 500 MHz, 25°C): δ 8.09 (s, 1H, N*H*), 7.45 (t, 1H, ${}^{3}J_{HH}$ = 8Hz, 2,6-C₆H₃[CH(CH₃)₂]₂), 7.34 (t, 1H, ${}^{3}J_{HH} = 8Hz, 2,6-C_{6}H_{3}[CH(CH_{3})_{2}]_{2}), 7.24 (d, 2H, {}^{3}J_{HH} = 8Hz,$ 2,6-C₆H₃[CH(CH₃)₂]₂), 7.18-7.16 (m, 2H, 2,6-C₆H₃ [CH(CH₃)₂]₂), 5.00–4.67 (m, 2H, NC₄H₈O), 4.14–3.87 (m, 4H, NC₄H₈O), 3.38–3.34 (m, 4H, 2,6-C₆H₃[CH(CH₃)₂]₂), 3.12–2.96 (m, 2H, NC₅ H_{10}), 1.32 (d, 12H, ³ J_{HH} = 7Hz, 2,6- $C_6H_3[CH(CH_3)_2]_2)$, 1.29 (d, 3H, ${}^3J_{HH}$ = 7Hz, 2,6- C_6H_3 [CH(CH₃)₂]₂), 1.23–1.21 (m, 6H, 2,6-C₆H₃[CH(CH₃)₂]₂), 1.09– 1.07 (m, 3H, 2,6-C₆H₃[CH(CH₃)₂]₂). ¹³C{¹H} NMR (CDCl₃, 125 MHz, 25°C): δ 178.6 (NHCN), 146.0 (2,6-C₆H₃ [CH(CH₃)₂]₂), 145.9 (2,6-C₆H₃[CH(CH₃)₂]₂), 134.3 (2,6-C₆H₃[CH(CH₃)₂]₂), 131.5 (2,6-C₆H₃[CH(CH₃)₂]₂), 131.3 (2,6-C₆H₃[CH(CH₃)₂]₂), 131.2 (2,6-C₆H₃[CH(CH₃)₂]₂), 130.9 (2,6-C₆H₃[CH(CH₃)₂]₂), 130.1 (2,6-C₆H₃[CH(CH₃)₂]₂), 124.3 (2,6-C₆H₃[CH(CH₃)₂]₂), 124.1 (2,6-C₆H₃[CH(CH₃)₂]₂), 123.9 (2,6-

Synthesis of cis-[((2,6-di-i-propylphenylamino) (piperidin-1-yl)methylidene)]PdCl₂(2,6-di-i-propylphenylisonitrile) (3)

To a solution of cis-[PdCl₂(2,6-di-i-propylphenyl isonitrile)₂]

C₆H₃[CH(CH₃)₂]₂), 123.8 (2,6-C₆H₃[CH(CH₃)₂]₂), 123.0 (CN-

2,6-C₆H₃[CH(CH₃)₂]₂), 67.1 (NC₄H₈O), 66.1 (NC₄H₈O), 57.4

(NC₄H₈O), 49.7 (NC₄H₈O), 30.1 (2,6-C₆H₃[CH(CH₃)₂]₂), 29.9

(2,6-C₆H₃[CH(CH₃)₂]₂), 29.8 (2,6-C₆H₃[CH(CH₃)₂]₂), 29.1

(2,6-C₆H₃[CH(CH₃)₂]₂), 28.5 (2,6-C₆H₃[CH(CH₃)₂]₂), 26.0

(2,6-C₆H₃[CH(CH₃)₂]₂), 25.7 (2,6-C₆H₃[CH(CH₃)₂]₂), 24.8

(2,6-C₆H₃[CH(CH₃)₂]₂), 23.1 (2,6-C₆H₃[CH(CH₃)₂]₂), 22.9

(2,6-C₆H₃[CH(CH₃)₂]₂), 22.8 (2,6-C₆H₃[CH(CH₃)₂]₂), 22.4

(2,6-C₆H₃[CH(CH₃)₂]₂). IR data (KBr pellet): 3119 (m), 2965

(s), 2869 (w), 2191 (s), 1589 (w), 1550 (s), 1462 (m), 1113

(m), 1025 (w), 800 (m), 750 (m) cm⁻¹. HRMS Calcd. for

[C₃₀H₄₃N₃Cl₂OPd-Cl]⁺ 602.2132, Found *m*/z 602.2131. Anal.

Calcd. for C₃₀H₄₃Cl₂N₃OPd: C, 56.39; H, 6.78; N, 6.58.

Found: C, 56.88; H, 7.10; N, 6.58%.

Singh et al.: Acyclic diaminocarbene complexes of palladium obtained by intermolecular hydroamination etc.

(0.203 g, 0.368 mmol) in THF (ca. 20 mL), piperidine (0.031 g, 0.368 mmol) was added at 0°C. The reaction mixture was stirred overnight at room temperature, after which the solvent was removed under vacuum. The residue was purified by column chromatography using silica gel as a stationary phase and by eluting with a mixed medium, CH₂Cl₂/CH₃OH (99/1 v/v) to give pure product as a yellow solid (0.164 g, 70%). ¹H NMR (CDCl₃, 500 MHz, 25°C): δ 7.69 (s, 1H, N*H*), 7.44 (t, 1H, ${}^{3}J_{HH}$ = 8Hz, 2,6-C₆H₃[CH(CH₃)₂]₂), 7.32 (t, 1H, ³J_{HH} = 8Hz, 2,6-C₆H₃[CH(CH₃)₂]₂), 7.24 (d, 2H, ³J_{HH} = 8Hz, 2,6-C₆H₃[CH(CH₃)₂]₂), 7.16 (br, 2H, 2,6-C₆H₃[CH(CH₃)₂]₂), 4.72–4.31 (m, 4H, NC₅H₁₀), 3.39 (sept, 4H, ³J_{HH} = 7Hz, 2,6-C₆H₃[CH(CH₃)₂]₂), 3.12–3.01 (m, 4H, NC₅H₁₀), 1.87–1.83 (m, 1H, NC₅ H_{10}), 1.48 (br, 1H, NC₅ H_{10}), 1.32 (d, 12H, ³ J_{HH} = 7Hz, 2,6-C₆H₃[CH(CH₃)₂]₂), 1.25 (br, 6H, 2,6-C₆H₃) [CH(CH₃)₂]₂), 1.17 (br, 6H, 2,6-C₆H₃ [CH(CH₃)₂]₂). ¹³C{¹H} NMR (CDCl₃, 100 MHz, 25°C): 176.6 (NHCN), 146.9 (2,6-C₆H₃[CH(CH₃)₂]₂), 146.5 (2,6-C₆H₃[CH(CH₃)₂]₂), 146.0 (2,6-C₆H₃[CH(CH₃)₂]₂), 134.8 (2,6-C₆H₃[CH(CH₃)₂]₂), 131.9 (2,6-C₆H₃[CH(CH₃)₂]₂), 131.5 (2,6-C₆H₃[CH(CH₃)₂]₂), 131.1 (2,6-C₆H₃[CH(CH₃)₂]₂), 131.0 (2,6-C₆H₃[CH(CH₃)₂]₂), 129.6 (2,6- $C_{6}H_{3}[CH(CH_{3})_{2}]_{2}), 124.1 (2,6-C_{6}H_{3}[CH(CH_{3})_{2}]_{2}), 123.9$ $\{2 \times (2,6-C_6H_3[CH(CH_3)_2]_2)\}, 123.7 (CN-2,6-C_6H_3)$ [CH(CH₃)₂]₂), 59.0 (NC₅H₁₀), 49.9 (NC₅H₁₀), 49.8 (NC₅H₁₀), 44.9 (NC₅H₁₀), 31.7 (NC₅H₁₀), 30.1 (2,6-C₆H₃[CH(CH₃)₂]₂), 30.0 $(2,6-C_6H_3[CH(CH_3)_2]_2)$, 29.9 $(2,6-C_6H_3[CH(CH_3)_2]_2)$, 29.8 (2,6-C₆H₃[CH(CH₃)₂]₂), 27.4 (2,6-C₆H₃[CH(CH₃)₂]₂), 26.4 (2,6-C₆H₃[CH(CH₃)₂]₂), 26.0 (2,6-C₆H₃[CH(CH₃)₂]₂), 23.9 (2,6-C₆H₃[CH(CH₃)₂]₂), 23.1 (2,6-C₆H₃[CH(CH₃)₂]₂), 23.0 (2,6-C₆H₃[CH(CH₃)₂]₂), 22.8 (2,6-C₆H₃[CH(CH₃)₂]₂), 22.4 (2,6-C₆H₃[CH(CH₃)₂]₂). IR data (KBr pellet): 3219 (s), 2964 (s), 2867 (w), 2189 (s), 1551 (s), 1464 (m), 1329 (m), 1242 (m), 1022 (w), 801 (m), 750 (m) cm⁻¹. HRMS Calcd. for [C₃₁H₄₅N₃Cl₂Pd-Cl]⁺ 600.2340, Found *m*/z 600.2369. Anal. Calcd. for C₃₁H₄₅Cl₂N₃Pd: C, 58.45; H, 7.12; N, 6.60. Found: C, 57.90; H, 6.84; N, 7.54%.

Supporting information

The ¹H NMR, ¹³C{¹H} NMR, IR, HRMS, and the CHN data of the ADC palladium complexes (**1-3**); CIF file giving X-ray crystallographic data associated with this article can be found in the journal webpage. This material is available free of charge via the journal webpage.

Acknowledgements

We thank the Department of Science and Technology (EMR/2014/000254), New Delhi, India, and Council of Scientific and Industrial Research (CSIR) {01(2880)/17/EMR-II} New Delhi, India, for financial support of this research. We gratefully acknowledge Single Crystal X-ray Diffraction Facility, Department of Chemistry, IIT Bombay, Mumbai, India, for the crystallographic characterization data. CS, APP and MKG, thank CSIR, New Delhi, India, for research fellowships.

References

- 1. L. M. Slaughter, ACS Catal., 2012, 2, 1802.
- V. P. Boyarskiy, K. V. Luzyanin and V. Y. Kukushkin, *Coord. Chem. Rev.*, 2012, 256, 2029.
- M. A. Kinzhalov and V. P. Boyarskii, *Russ. J. Gen. Chem.*, 2015, 85, 2313.
- 4. V. P. Boyarskiy, N. A. Bokach, K. V. Luzyanin and V. Y. Kukushkin, *Chem. Rev.*, 2015, **115**, 2698.
- 5. A. Nasr, A. Winkler and M. Tamm, *Coord. Chem. Rev.*, 2016, **316**, 68.
- F. Pape and J. F. Teichert, *Eur. J. Org. Chem.*, 2017, 2017, 4206.
- R. D. J. Froese, C. Lombardi, M. Pompeo, R. P. Rucker and M. G. Organ, *Acc. Chem. Res.*, 2017, **50**, 2244.
- S. Zhao, J. Wu and W. Chen, J. Organomet. Chem., 2017, 848, 249.
- 9. R. Zhong, A. C. Lindhorst, F. J. Groche and F. E. Kuehn, *Chem. Rev.*, 2017, **117**, 1970.
- 10. Q. Ren, M. Li, L. Yuan and J. Wang, Org. Biomol. Chem., 2017, **15**, 4731.
- 11. E. Peris, *Chem. Rev.*, 2017, DOI: 10.1021/acs.chemrev. 6b00695.
- W. Wang, L. Cui, P. Sun, L. Shi, C. Yue and F. Li, *Chem. Rev.*, 2018, DOI: 10.1021/acs.chemrev.8b00057.
- 13. D. Kremzow, G. Seidel, C. W. Lehmann and A. Fuerstner, *Chem.-Eur. J.*, 2005, **11**, 1833.
- 14. A. S. K. Hashmi, C. Lothschütz, C. Böhling and F. Rominger, Organometallics, 2011, **30**, 2411.
- M. A. Kinzhalov, G. L. Starova, M. Haukka and V. P. Boyarskii, *Russ. J. Gen. Chem.*, 2016, **86**, 2350.
- S. A. Timofeeva, M. A. Kinzhalov, E. A. Valishina, K. V. Luzyanin, V. P. Boyarskiy, T. M. Buslaeva, M. Haukka and V. Y. Kukushkin, *J. Catal.*, 2015, **329**, 449.
- T. B. Anisimova, M. A. Kinzhalov, M. F. C. Guedes da Silva, A. S. Novikov, V. Y. Kukushkin, A. J. L. Pombeiro and K. V. Luzyanin, *New J. Chem.*, 2017, 41, 3246.
- M. A. Kinzhalov, S. A. Timofeeva, K. V. Luzyanin, V. P. Boyarskiy, A. A. Yakimanskiy, M. Haukka and V. Y. Kukushkin, Organometallics, 2016, 35, 218.

- V. N. Mikhaylov, V. N. Sorokoumov, K. A. Korvinson, A. S. Novikov and I. A. Balova, *Organometallics*, 2016, 35, 1684.
- J. P. Coyle, E. R. Sirianni, I. Korobkov, G. P. A. Yap, G. Dey and S. T. Barry, Organometallics, 2017, 36, 2800.
- A. Kumar, A. Naaz, A. P. Prakasham, M. K. Gangwar, R. J. Butcher, D. Panda and P. Ghosh, ACS Omega, 2017, 2, 4632.
- 22. S. Ray, J. Asthana, J. M. Tanski, M. M. Shaikh, D. Panda and P. Ghosh, *J. Organomet. Chem.*, 2009, **694**, 2328.
- S. Ray, R. Mohan, J. K. Singh, M. K. Samantaray, M. M. Shaikh, D. Panda and P. Ghosh, *J. Am. Chem. Soc.*, 2007, **129**, 15042.
- 24. B. Ramasamy and P. Ghosh, *Eur. J. Inorg. Chem.*, 2016, 2016, 1448.
- 25. A. P. Prakasham and P. Ghosh, *Inorg. Chim. Acta*, 2015, **431**, 61.
- A. Kumar and P. Ghosh, *Eur. J. Inorg. Chem.*, 2012, DOI: 10.1002/ejic.201200622, 3955-3969.
- 27. A. John and P. Ghosh, Dalton Trans., 2010, 39, 7183.
- 28. A. P. Prakasham, M. K. Gangwar and P. Ghosh, *J. Organomet. Chem.*, 2018, **859**, 106.
- D. Kumar, A. P. Prakasham, S. Das, A. Datta and P. Ghosh, ACS Omega, 2018, 3, 1922.
- M. N. Rao, M. Haridas, M. K. Gangwar, P. Rajakannu, A. C. Kalita and P. Ghosh, *Eur. J. Inorg. Chem.*, 2015, 2015, 1604.
- D. Kumar, A. P. Prakasham, L. P. Bheeter, J.-B. Sortais, M. Gangwar, T. Roisnel, A. C. Kalita, C. Darcel and P. Ghosh, *J. Organomet. Chem.*, 2014, **762**, 81.
- M. K. Samantaray, M. M. Shaikh and P. Ghosh, Organometallics, 2009, 28, 2267.
- 33 M. K. Samantaray, M. M. Shaikh and P. Ghosh, *J. Organomet. Chem.*, 2009, **694**, 3477.
- 34. L. Ray, S. Barman, M. M. Shaikh and P. Ghosh, *Chem. Eur. J.*, 2008, **14**, 6646.
- 35. L. Ray, M. M. Shaikh and P. Ghosh, *Organometallics*, 2007, **26**, 958.
- 36. L. Ray, M. M. Shaikh and P. Ghosh, *Dalton Trans.*, 2007, 4546.
- A. Kumar, A. P. Prakasham, M. K. Gangwar, P. Vishnoi, R. J. Butcher and P. Ghosh, *Eur. J. Inorg. Chem.*, 2017,

2017, 2144.

- A. Kumar, L. P. Bheeter, M. K. Gangwar, J.-B. Sortais, C. Darcel and P. Ghosh, *J. Organomet. Chem.*, 2015, 786, 63.
- A. Kumar, M. K. Gangwar, A. P. Prakasham, D. Mhatre, A. C. Kalita and P. Ghosh, *Inorg. Chem.*, 2016, 55, 2882.
- 40. C. Dash, M. M. Shaikh, R. J. Butcher and P. Ghosh, Dalton Trans., 2010, **39**, 2515.
- A. Kumar, M. K. Gangwar, M. M. Shaikh and P. Ghosh, Proc. Natl. Acad. Sci. India, Sect. A, 2016, 86, 605.
- S. Modak, M. K. Gangwar, M. Nageswar Rao, M. Madasu, A. C. Kalita, V. Dorcet, M. A. Shejale, R. J. Butcher and P. Ghosh, *Dalton Trans.*, 2015, 44, 17617.
- 43. A. John, S. Modak, M. Madasu, M. Katari and P. Ghosh, *Polyhedron*, 2013, **64**, 20.
- 44. A. John, M. M. Shaikh and P. Ghosh, *Dalton Trans.*, 2009, 10581.
- B. Ramasamy, M. Kumar Gangwar and P. Ghosh, *Eur. J.* Inorg. Chem., 2017, **2017**, 3253.
- M. K. Gangwar, A. C. Kalita and P. Ghosh, *J. Chem. Sci.*, 2014, **126**, 1557.
- 47. A. Kumar, M. Katari and P. Ghosh, *Polyhedron*, 2013, **52**, 524.
- C. Singh, A. P. Prakasham, M. K. Gangwar, R. J. Butcher and P. Ghosh, ACS Omega, 2018, 3, 1740.
- 49. B. Crociani, P. Uguagliati and U. Belluco, *J. Organomet. Chem.*, 1976, **117**, 189.
- A. S. K. Hashmi, C. Lothschuetz, C. Boehling, T. Hengst, C. Hubbert and F. Rominger, *Adv. Synth. Catal.*, 2010, 352, 3001.
- B. Cordero, V. Gomez, A. E. Platero-Prats, M. Reves, J. Echeverria, E. Cremades, F. Barragan and S. Alvarez, *Dalton Trans.*, 2008, 2832.
- I. M. Sluch, A. J. Miranda, O. Elbjeirami, M. A. Omary and L. M. Slaughter, *Inorg. Chem.*, 2012, **51**, 10728.
- V. A. Rassadin, A. A. Yakimanskiy, E. V. Eliseenkov and V. P. Boyarskiy, *Inorg. Chem. Commun.*, 2015, 61, 21.
- A. Yakimanskiy, I. Boyarskaya and V. Boyarskiy, J. Coord. Chem., 2013, 66, 3592.
- F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen and R. Taylor, *J. Chem. Soc., Perkin Trans.* 2, 1987, DOI: 10.1039/P298700000S1, S1-S19.