

2nd European Photon & Neutron **EOSC Symposium**

26 October 2021

Describe data by scripts for future reuse

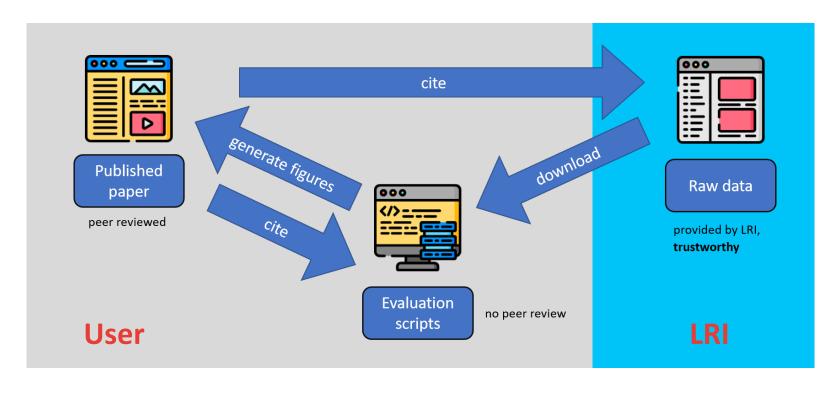
Author: Petr Čermák

Affiliation: (https://mgml.eu/), Charles University

26. October 2021

F.A.I.R. and more

Lets do a quick test of Fairness


- **√** Findable
- **✓** Accessible
- ? Interoperable
- ? Reusable
- **✓** Trustworthy

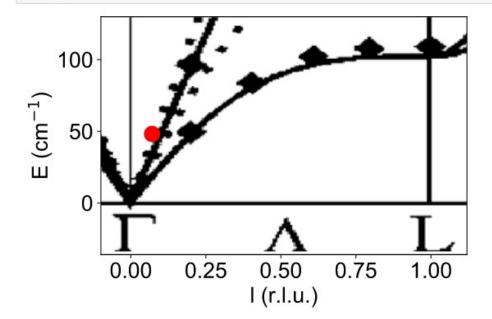
Ideal world

- Measured data are published in full form
- Raw data can't be modified → control checksum
- Whole process is automatic

DOI > 10.5291/ILL-DATA.TEST-2385

1) Treat data by scripts Python, Julia, R ...

Download the data


```
Title
```

HSC17 Hercules practical course

This proposal is publicly available since 09/19/2019

Abstract

```
In [15]: # import libraries i will need
          # for downloading files from itnernet
 In [2]: # create a model of a simple Gaussian peak with given initial guess
         model = Background() + Gauss('p1', pos=0.1, ampl=100, fwhm=0.1) + Gauss('p2', pos='-p1 pos', ampl=100, fwhm=0.1)
In [5]: img = imread("phonon.png")
         fig, ax = subplots()
         errorbar([result.paramvalues['p1 pos']], [energy], xerr=result.paramerrors['p1 pos'], fmt='ro', ms = 14)
         ax.imshow(img, extent=[-0.1, 1.12, -36, 130], aspect='auto')
         xlabel("l (r.l.u.)")
         ylabel("E (cm$^{-1}$)")
         savefig("dispersion.eps", bbox inches='tight')
         show()
```


Metadata

Identifier

DOI doi:10.5291/ILL-DATA.TEST-238

Authors

STEFFENS Paul

DELLEA Greta

DENG Yue

DIETL Christopher

DJURADO David

GAMBINO Marianna

HEPTING Matthias (ORCID)

INKINEN JUHO

JAFARI Atefeh

LEFRANCOIS Emilie

LOPES SELVATI Ana Carolina

PANAHI Hamed

PEDERSEN Martin Nors

PRADIP Ramu

RANIERI Umbertoluca

ROSSI Matteo

SCHATTE Sarah

STANA Markus

IBINO

ES

SI

TIMOSENKO Janis

VONESHEN David

ZBIRI Mohamed

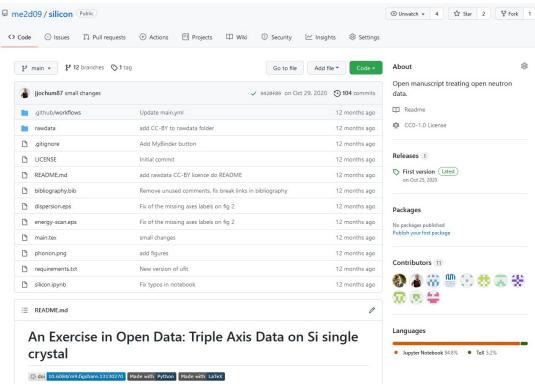
In the year 2525

if man is still alive
If woman can survive,
they may find... your data

- PyPI is a repository of software for Python
- requirements.txt will tell, which packages to use
- Same exist for Julia (Project.toml) or R (install.R)

```
    requirements.txt

1    requests==2.24.0
2    beautifulsoup4==4.9.3
3    ufit==1.4.2
4
```



Publish the script

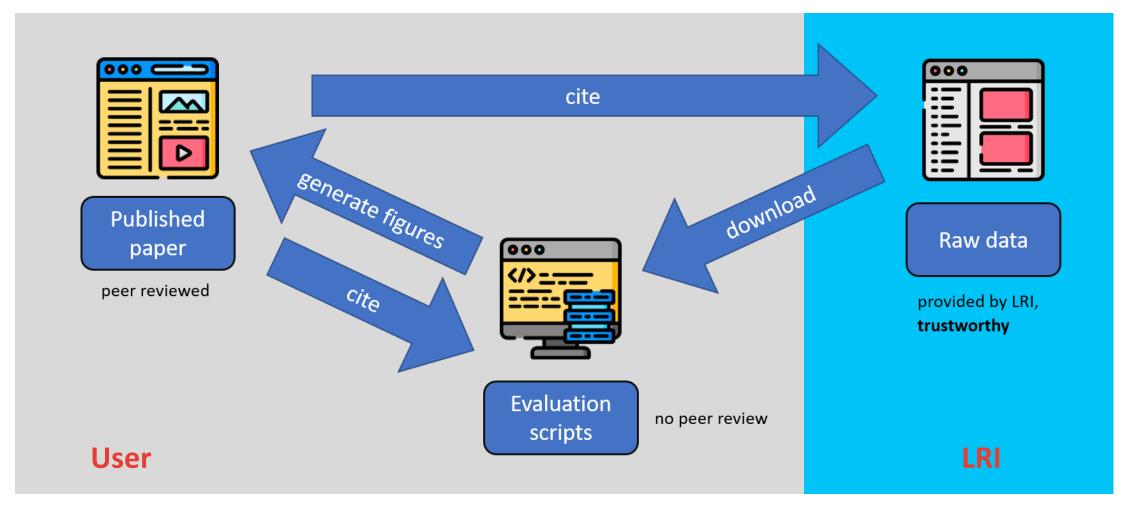
GitHub -> figshare

Github is perfect for tracking changes **figshare** can clone actuall state of repository **figshare** will make scripts citable (doi)

There should be:

- xyz.ipynb
 (download data, treat data, generate figures)
- requirements.txt(do be used in 2525)
- o Bonus: add paper.tex 💪

... magic will happen


https://mybinder.org/v2/gh/me2d09/silicon/main?filepath=silicon.ipynb

Conclusions

2nd European Photon & Neutron EOSC Symposium

26 October 2021

Thank you

Petr Čermák

@petrscience

cermak@mag.mff.cuni.cz

Presentation: <u>doi:10.6084/m9.figshare.16869467</u>

Data: doi:10.5291/ILL-DATA.TEST-2385

Scripts: doi:10.6084/m9.figshare.13130270.v1

Github repo: https://github.com/me2d09/silicon

Paper: https://arxiv.org/abs/2010.12086

Icons made by Freepik from www.flaticon.com.

PaNOSC and ExPaNDS projects have received funding from the European Union's Horizon 2020 research and innovation programme under grant agreements 823852 and 857641, respectively.