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Abstract

We address the problem of finding out the values of the Hurwitz zeta function at
the positive integers k, ζ(k, b), by working out their real and imaginary parts separately
and then combining them. A few different formulae for the Hurwitz zeta function are
known from the literature, but they are very general and usually hold for <(k) > 1. The
advantage of formulae that only hold at the positive integers is the fact that they are
usually simpler and easier to work with. We also obtain an analytic continuation for
the generating function of ζ(k, b) as

∑
k≥2 x

k(ζ(k, b)− 1/bk), valid for complex x and b,

where term 1/bk was subtracted for convenience.
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1 Introduction

The Hurwitz zeta function, ζ(k, b), is one of the many generalizations that were thought out
for the Riemann zeta function. Its importance lies on its relation to Riemann’s zeta function
and consequently to the Riemann hypothesis itself, to some degree.

In this article we create a formula for ζ(k, b) that holds at the positive integers k. The
advantage of formulae that only hold at the positive integers is the fact we expect them to
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be simpler and easier to work with. It’s an obvious statement if, for example, we think about
the closed-forms of the zeta function at the positive integers greater than 1 and its general
integral, valid for <(k) > 1.

Findings from previous papers I wrote on generalized harmonic numbers, Hk(n)2, and gen-
eralized harmonic progressions, HPk(n)3, 4, make it extremely easy to figure out the limits of
both when n goes to infinity, which matters because ζ(k, b) is the limit of HPk(n) when n
tends to infinity.

Hence, for the problem at hand we can rely on the formula for HPk(n) from [4], since it
allows for non-integer b.

First, let’s recall the formula, which holds for any complex b, except for a zero measure
subset of C (that is, ib ∈ Z). For simplicity, let’s assume that a = 1 and that b is real, so we
know which part of the formula is real and which part is a pure complex. Then, HPk(n) is
given by:

n∑
j=1

1

(ij + b)k
= − 1

2bk
+

1

2(in+ b)k

+ (2π)ke−2πb
∫ 1

0

(
(1− u)k−1

(k − 1)!
+

k∑
j=1

Li−j+1(e
−2πb)(1− u)k−j

(j − 1)!(k − j)!

)
eπu(in+2b) sin πnu cotπu du,

where Li−j+1(e
−2πb) is the polylogarithm of order −j + 1. The polylogarithm, Lik(z), is the

analytic continuation of a Dirichlet series given by:

Lik(z) =
∞∑
j=1

zj

jk

The polynomial in u that goes in the integrand is generated by the below function:

f(x) = −2πx e2πx(1−u)

e2πx − e2πb
⇒ f (k)(0)

k!
= (2π)ke−2πb

(
(1− u)k−1

(k − 1)!
+

k∑
j=1

Li−j+1(e
−2πb)(1− u)k−j

(j − 1)!(k − j)!

)

Assuming b is real, this integral can be transformed using Euler’s formula for the exponen-
tial of a complex argument, and then replacing cos πnu sin πnu and sin2 πnu with equivalent
expressions. Let’s also introduce the Kronecker delta (δij) in the formula to make it shorter:

n∑
j=1

1

(ij + b)k
= − 1

2bk
+

1

2(in+ b)k

+
(2π)k

2

∫ 1

0

k∑
j=1

(
δ1j + Li−j+1(e

−2πb)
)
uk−j

(j − 1)!(k − j)!
e−2πbu (sin 2πn(1− u) + i(1− cos 2πn(1− u))) cotπ(1− u) du,

where δij = 1 if i = j, and 0 otherwise.
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2 Limit of HPk(n) for real b

In this section we obtain the real and imaginary parts of the limit ofHPk(n) as n approaches
infinity separately, assuming b is real. At the end, we obtain ζ(k,−ib) by means of the relation:

ζ(k,−ib) = ik
∞∑
j=0

1

(ij + b)k
(1)

This solution provides another proof that HP (n) diverges, though that is not the focus.

2.1 The real part

For the real part, when n is large, we have:

<

 n∑
j=1

1

(ij + b)k

 ∼ − 1

2bk
+

(2π)k

2

∫ 1

0

k∑
j=1

(
δ1j + Li−j+1(e

−2πb)
)
uk−j

(j − 1)!(k − j)!
e−2πbu sin 2πn(1− u) cotπ(1− u) du

Let’s recall a result that appeared in reference [2], whose proof depends on formulae that
feature in Abramowitz and Stegun1:

Theorem 1 lim
n→∞

∫ 1

0

uk sin 2πn(1− u) cotπ(1− u) du =

{
1, if k = 0
1
2
, if integer k > 0

If we look at the real part of the formula only, we can split the sum inside the integral into
a polynomial in u and a constant, since the limits for each are different. And since e−2πbu is
a polynomial in u itself, when they are multiplied together, as below, in only one of the four
possible cases the limit as n approaches infinity is 1 (all others being 1/2):

lim
n→∞

∫ 1

0

δ1k + Li−k+1(e−2πb)

(k − 1)!
+

k−1∑
j=1

(
δ1j + Li−j+1(e−2πb)

)
uk−j

(j − 1)!(k − j)!

(1 +

∞∑
v=1

(−2πb)vuv

v!

)
sin 2πn(1− u) cotπ(1− u) du

This leads us to the below limit:

δ1k + Li−k+1(e
−2πb)

(k − 1)!

(
1 +
−1 + e−2πb

2

)
+
e−2πb

2

k−1∑
j=1

(
δ1j + Li−j+1(e

−2πb)
)
uk−j

(j − 1)!(k − j)!

Therefore, as a consequence of theorem 1, after we do all the necessary algebra we conclude
that if b is real then:

<

(
∞∑
j=0

1

(ij + b)k

)
=

1

2bk
+

(2π)k
(
δ1k + Li−k+1(e

−2πb)
)

4(k − 1)!
+

(2π)ke−2πb

4

k∑
j=1

δ1j + Li−j+1(e
−2πb)

(j − 1)!(k − j)!

Note j starts at 0 to coincide with the Hurwitz zeta function, so we need to add 1/bk.

The real part of this infinite sum is finite even when k = 1, unlike the imaginary part.
Next, we try to apply the same reasoning for the imaginary part.

3



2.2 The imaginary part

For the imaginary part, when n is large, we have:

=

 n∑
j=1

1

(ij + b)k

 ∼ (2π)k

2

∫ 1

0

k∑
j=1

(
δ1j + Li−j+1(e

−2πb)
)
uk−j

(j − 1)!(k − j)!
e−2πbu(1−cos 2πn(1− u)) cotπ(1− u) du

So, to fully understand what happens in the case of the imaginary part, we need to go back
to one of the results from [2]. It provides us with an equivalence between certain integrals and
generalized harmonic numbers. More specifically, we’ve seen that:

∫ 1

0

(1− u)2k+1 (1− cos 2πnu) cotπu du =
2(−1)k(2k + 1)!

(2π)2k+1

 k∑
j=0

(−1)k−j(2π)2k−2j

(2k + 1− 2j)!
H2j+1(n)− 1

2n2k+1

k∑
j=0

(−1)j(2πn)2j

(2j + 1)!


∫ 1

0

(1− u)2k+2 (1− cos 2πnu) cotπu du =
2(−1)k(2k + 2)!

(2π)2k+1

 k∑
j=0

(−1)k−j(2π)2k−2j

(2k + 2− 2j)!
H2j+1(n)− 1

2n2k+1

k∑
j=0

(−1)j(2πn)2j

(2j + 2)!


Let’s consider their limit as n approaches infinity. If n is sufficiently large:∫ 1

0
(1− u)2k+1 (1− cos 2πnu) cotπu du ∼ γ + log n

π
+

2(−1)k(2k + 1)!

(2π)2k+1

k∑
j=1

(−1)k−j(2π)2k−2j

(2k + 1− 2j)!
ζ(2j + 1)

∫ 1

0
(1− u)2k+2 (1− cos 2πnu) cotπu du ∼ γ + log n

π
+

2(−1)k(2k + 2)!

(2π)2k+1

k∑
j=1

(−1)k−j(2π)2k−2j

(2k + 2− 2j)!
ζ(2j + 1)

Using findings from [2], we can obtain the following analytic continuation for these approx-
imations1, which holds for any complex k such that <(k) > 0:∫ 1

0

(1− u)k(1− cos 2πnu) cotπu du ∼ γ + log n

π
−
∫ 1

0

(uk − u) cotπu du

Now we can see that, unlike the integrals that appear in the formula of the real part, these
new ones all explode out to infinity as n goes to infinity.

Hence, like in theorem 7 from [2], a linear combination of these integrals, say p(u) =∑
k aku

k, ∫ 1

0

p(u)(1− cos 2πn(1− u)) cotπ(1− u) du,

will only converge if p(1) = 0. But that is not a problem, since fortunately,∫ 1

0

(1− cos 2πn(1− u)) cotπ(1− u) du = 0, ∀ integer n,

1It stems from the expressions for Cm2k+1(n) and Sm2k(n) and for their limits, Cm2k+1 and Sm2k.
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which means that, without altering the result whatsoever for integer n, we can change the
formula at the beginning of this section into:

(2π)k

2

∫ 1

0

k∑
j=1

(
δ1j + Li−j+1(e

−2πb)
) (
uk−je−2πbu − e−2πb

)
(j − 1)!(k − j)!

(1− cos 2πn(1− u)) cotπ(1− u) du,

and therefore, since the infinities now cancel out, we can conclude that:

=

(
∞∑
j=0

1

(ij + b)k

)
= −(2π)k

2

∫ 1

0

k∑
j=1

(
δ1j + Li−j+1(e

−2πb)
) (
uk−je−2πbu − e−2πb

)
(j − 1)!(k − j)!

cot πu du

The imaginary part doesn’t converge when k = 1 since the above integral doesn’t converge.

3 Hurwitz zeta function

The relation (1) implies that when b is a real or purely imaginary number, the formulae
we created allow us to separate the real and imaginary parts of ζ(k,−ib).

For some lucky coincidence, when the two parts are combined the formula holds even when
b is not real, so let’s make a simple transformation to obtain the proper Hurwitz zeta function.
For integer k ≥ 2:

ζ(k, b) =
1

2bk
+

(2πi)k
(
δ1k + Li−k+1(e

−2πib)
)

4(k − 1)!
+

(2πi)ke−2πib

4

k∑
j=1

δ1j + Li−j+1(e
−2πib)

(j − 1)!(k − j)!

− i(2πi)k

2

∫ 1

0

k∑
j=1

(
δ1j + Li−j+1(e

−2πib)
) (
uk−je−2πib u − e−2πib

)
(j − 1)!(k − j)!

cotπu du

3.1 A special case

I didn’t find the below closed-form in the literature (meaning, the software Mathematica),
though I can’t be sure if it’s really unknown (it’s very probably not):

ζ

(
2,

5

4

)
= −16 + π2 + 8G, where G is Catalan’s constant.

4 The ζ(k, b) generating function

Now, assuming again that b is real, we derive a generating function for HPk(n) and deter-
mine its limit when n goes to infinity:

∞∑
k=1

xk
n∑
j=1

1

(ij + b)k
=
∞∑
k=1

− xk

2bk
+

xk

2(in+ b)k
+

1

2

∞∑
k=1

∫ 1

0

k∑
j=1

(
δ1j + Li−j+1(e

−2πb)
)

(2πx)j

(j − 1)!

(2πx(1− u))k−j

(k − j)!
e−2πb(1−u) (sin 2πnu+ i(1− cos 2πnu)) cotπu du
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The sum within the integral is the sum of the product of the general terms of two power
series whose generating functions we know:

p(x) =
−2πx

(e2πx − e2πb)
· e2πx(1−u)

Therefore, the integrand is the power series of the product of these two functions, and we
can rewrite the formula as:

∞∑
k=1

xk
n∑
j=1

1

(ij + b)k
=
∞∑
k=1

xk
(
− 1

2bk
+

1

2(in+ b)k

)
− πx

e2πx − e2πb

∫ 1

0

e2πx(1−u)e2πbu (sin 2πnu+ i(1− cos 2πnu)) cotπu du

Since we want to take the limit of that expression as n goes to infinity, we need to subtract
the harmonic progression of order 1, which diverges (our method will show us once more why
this is the case, later down the line). Thus we have:

∞∑
k=2

xk
n∑
j=1

1

(ij + b)k
=
∞∑
k=2

xk
(
− 1

2bk
+

1

2(in+ b)k

)

− πx
∫ 1

0

(
1

e2πb − 1
+

e2πx(1−u)

e2πx − e2πb

)
e2πbu (sin 2πnu+ i(1− cos 2πnu)) cotπu du

4.1 The real part

Let’s tackle the limit of the real part first. By following the same thought process that has
been laid out in section (2.1), we conclude that the real part is given by:

<

(
∞∑
k=2

xk
∞∑
j=1

1

(ij + b)k

)
=

x2

2b(x− b)
+

πx(e2πx − 1)

(e−2πb − 1)(e2πx − e2πb)

4.2 The imaginary part

When I first wrote this demonstration, I still hadn’t had the insight that I used to derive
the limit of the imaginary part from section (2.2), so the following rationale may be unneces-
sarily convoluted.

When it comes to the imaginary part, we can obviously discard the two terms outside of
the integral, as one is real and the other one goes to zero as n goes to infinity, leaving us with:

=

(
∞∑
k=2

xk
∞∑
j=1

1

(ij + b)k

)
= lim

n→∞
−πx

∫ 1

0

(
1

e2πb − 1
+

e2πx(1−u)

e2πx − e2πb

)
e2πbu(1−cos 2πnu) cotπu du
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Here we realize that in order to figure out the above limits, we need to solve the below
problem. To solve the two limits at once, let’s use c = c(x) as the coefficient of u:

lim
n→∞

∫ 1

0

e−c u(1− cos 2πnu) cotπu du

Just to be sure we’re not missing anything, let’s make our initial formula more in sync with
the asymptotic formulae from (2.2) by changing u for 1− u:

=

(
∞∑
k=2

xk
n∑
j=1

1

(ij + b)k

)
= lim

n→∞
−πxe2πb

∫ 1

0

(
e−2πbu

e2πb − 1
+

e2π(x−b)u

e2πx − e2πb

)
(1−cos 2πn(1− u)) cotπ(1− u) du

Also, let’s introduce a variable y in the integral we need to evaluate, to help us with the
power series manipulations that we need to perform. In the end we just need to remember to
set y to 1 (and c to 2πb or 2π(x− b)):∫ 1

0

e−cy u(1− cos 2πn(1− u)) cotπ(1− u) du =∫ 1

0

(
1 +

∞∑
k=0

(−cy)2k+1

(2k + 1)!
u2k+1 +

(−cy)2k+2

(2k + 2)!
u2k+2

)
(1− cos 2πn(1− u)) cotπ(1− u) du

Note we can ignore the constant 1, since that integral is 0 for all integer n. After we replace
each uk(1− cos 2πn(1− u)) cotπ(1− u) du with their asymptotic formulae from section (2.2),
part of the above expression reduces to:

γ + log n

π

∞∑
k=0

−c2k+1

(2k + 1)!
+

c2k+2

(2k + 2)!
=
γ + log n

π
(− sinh c− 1 + cosh c)

This part explodes out to infinity, and it’s due to HP (n), as mentioned in the introduc-
tion, which we subtracted from the generating function. Therefore, we expect these infinities
to cancel out when we add up the terms that have c = 2πb and c = −2π(x− b) in our initial
formula.

Now, let’s see the part that doesn’t diverge:

1

π

∞∑
k=0

−(cy)2k+1

k∑
j=1

(−1)j(2π)−2j

(2k + 1− 2j)!
ζ(2j + 1) + (cy)2k+2

k∑
j=1

(−1)j(2π)−2j

(2k + 2− 2j)!
ζ(2j + 1)

It’s not a very simple sum, and it’s not very easy to know how to proceed from here. But,
let’s recall the integral representation we derived for ζ(2j+1) in [2], only here it’s been slightly
modified:

ζ(2j + 1) = −(−1)j(2π)2j+1

2

∫ 1

0

j∑
p=0

B2p (2− 22p)u2j−2p+1

(2p)!(2j − 2p+ 1)!
cotπu du
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Let’s start with the first part of the previous sum:

− 1

π

∞∑
k=0

(cy)2k+1

k∑
j=1

(−1)j(2π)−2j

(2k + 1− 2j)!

(
−(−1)j(2π)2j+1

2

∫ 1

0

j∑
p=0

B2p (2− 22p)u2j−2p+1

(2p)!(2j − 2p+ 1)!
cotπu du

)
⇒

∞∑
k=0

(cy)2k+1

k∑
j=1

1

(2k + 1− 2j)!

∫ 1

0

j∑
p=0

B2p (2− 22p)u2j−2p+1

(2p)!(2j − 2p+ 1)!
cotπu du =

1

cy

∫ 1

0

∞∑
k=0

(
k∑
j=0

(cy)2k+1−2j

(2k + 1− 2j)!
(cy)2j+1

j∑
p=0

B2p (2− 22p)u2j−2p+1

(2p)!(2j − 2p+ 1)!
− (cy)2k+2u

(2k + 1)!

)
cotπu du

Again, the above power series is the product of two somewhat familiar functions. One of
them is obviously sinh cy, and the other one (which appeared in [2] in non-hyperbolic form) is:

∞∑
j=0

(cy)2j+1

j∑
p=0

B2p (2− 22p)u2j−2p+1

(2p)!(2j − 2p+ 1)!
= cy csch cy sinh cuy

Therefore, the final conclusion is:

− 1

π

∞∑
k=0

(cy)2k+1

k∑
j=1

(−1)j(2π)−2j

(2k + 1− 2j)!
ζ(2j + 1) = sinh cy

∫ 1

0

(csch cy sinh cuy − u) cotπu du

And since the second part follows an analogous thought process, its development is omitted,
but the end result is below:

1

π

∞∑
k=0

(cy)2k+2

k∑
j=1

(−1)j(2π)−2j

(2k + 2− 2j)!
ζ(2j + 1) = (1− cosh cy)

∫ 1

0

(csch cy sinh cuy − u) cotπu du

Now, we can sum it all up by making y = 1:

1

π

∞∑
k=0

−c2k+1

k∑
j=1

(−1)j(2π)−2j

(2k + 1− 2j)!
ζ(2j + 1) + c2k+2

k∑
j=1

(−1)j(2π)−2j

(2k + 2− 2j)!
ζ(2j + 1) =

− (e−c − 1)

∫ 1

0

(csch c sinh cu− u) cotπu du

To wrap it up, we just need to evaluate the initial expression with the above identity, and
when we do so we find that:

=

(
∞∑
k=2

xk
∞∑
j=1

1

(ij + b)k

)
= πx

∫ 1

0

(csch 2π(x− b) sinh 2π(x− b)u− sinh 2πb csch 2πbu) cotπu du
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4.3 Conclusion

If we don’t assume that b is real then, provided that ib /∈ Z (and provided that the right-
hand side doesn’t contain singularities, such as b = x), we can simply state that, for b, x ∈ C,
when the limit exists it’s given by:

∞∑
k=2

xk
∞∑
j=1

1

(ij + b)k
=

x2

2b(x− b)
+

πx(e2πx − 1)

(e−2πb − 1)(e2πx − e2πb)
+

iπx

∫ 1

0

(csch 2π(x− b) sinh 2π(x− b)u− csch 2πb sinh 2πbu) cotπu du

However, when the left-hand side diverges, the expression on the right can still converge, if
it doesn’t have singularities, meaning that it’s an analytic continuation of the left-hand side.

The above can be turned into a better looking equation without non-real numbers, which
in principle holds if b 6= 0, b 6= x and 2b and 2(x− b) are not integers:

f(x) =
∞∑
k=2

xk
(
ζ(k, b)− 1

bk

)
=

x2

2b(x− b)
− πx sin πx

2 sinπb
csc π(x− b)

− πx
∫ 1

0

(
sin 2π(x− b)u
sin 2π(x− b)

− sin 2πbu

sin 2πb

)
cotπu du

Notice that x = 2b causes the integral to vanish, which hints at a possible set of solutions
for the zeros of this equation, though we don’t pursue it.

To know what the formula looks like when b is a positive integer, we can rely on the below
identity:

f(x) =
∞∑
k=2

xk
∞∑
j=1

1

(j + b)k
=
∞∑
k=2

xk(ζ(k)−Hk(b))

In general, when b is an integer, we can obtain f(x) by using the generating functions we
created for Hk(n) and ζ(k) in [2], which, after all the necessary calculations are performed,
leads us to:

f(x) =



x2

2b(x−b) −
πx sinπx
2 sinπb

csc π(x− b)− πx
∫ 1

0

(
sin 2π(x−b)u
sin 2π(x−b) −

sin 2πbu
sin 2πb

)
cot πu du , if 2b 6∈ Z

1
2
− πx

2
cot πx− πx

∫ 1

0

(
sin 2πxu
sin 2πx

− u
)

cotπu du , if b = 0
x2

2b(x−b) −
πx
2

cot πx− πx
∫ 1

0

(
sin 2π(x−b)u

sin 2πx
− u cos 2πbu

)
cot πu du , if b ∈ Z+

1 + x2

2b(x−b) −
πx
2

cot πx− πx
∫ 1

0

(
sin 2π(x−b)u

sin 2πx
− u cos 2πbu

)
cot πu du , if b ∈ Z−,

where we’re skipping over singularities in the case of negative integer b, and leaving only the
half-integers b unaccounted for.
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Note some of these functions have a removable singularity at 0, so they are analytic at 0.
So, for k ≥ 2, we can also obtain ζ(k, b) as:

ζ(k, b) =
1

bk
+
f (k)(0)

k!
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