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Abstract

This paper presents new formulae for the harmonic numbers of order k, Hk(n), and
for the partial sums of two Fourier series associated with them, denoted here by Cmk (n)
and Smk (n). I believe this new formula for Hk(n) is an improvement over the digamma
function, ψ, because it’s simpler and it stems from Faulhaber’s formula, which provides
a closed-form for the sum of powers of the first n positive integers. We demonstrate how
to create an exact power series for the harmonic numbers, a new integral representation
for ζ(2k + 1) and a new generating function for ζ(2k + 1), among many other original
results. The approaches and formulae discussed here are entirely different from solutions
available in the literature.
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1 Introduction

Although formulae for the harmonic numbers have been known for some time, they’re not
simple or very useful. For example, a formula due to Euler expresses H(n) as

∫ 1

0
(1 + x+ · · ·+

xn−1) dx for integer n, but it’s frequently dismissed by scholars, who prefer the approximation
H(n) ∼ log(n) + γ.

In this paper we figure how to obtain a more natural and elegant formula for the generalized
harmonic numbers:

Hk(n) =
n∑
j=1

1

jk

This new formula has the advantage of being easier to work with. For example, it can be
used to obtain the sum of H(n)/n2 over the positive integers relatively easy.

We also show how to obtain the partial sums of two Fourier series, denoted here by Smk (n)
and Cm

k (n), which cover some notable particular cases, such as the alternating harmonic num-
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bers, C2
k(n), and the odd alternating harmonic numbers, S4

k(n) (S4
2(n) converges to Catalan’s

constant). These two functions are given below (for all integer k ≥ 1 and complex m):

Cm
k (n) =

n∑
j=1

1

jk
cos

2πj

m
, and Smk (n) =

n∑
j=1

1

jk
sin

2πj

m

We create general formulae for Cm
k (n) and Smk (n) and find out their limits as n approaches

infinity as a function of Riemann’s zeta function. (After looking up previous results in the
literature, I found that the limits of Cm

2k(n) and Sm2k+1(n) are not new, they are a function of
the so-called Bernoulli polynomials,1 though the limits of Cm

2k+1(n) and Sm2k(n) are possibly
new.)

So, to begin, let’s recall Faulhaber’s formula for the sum of the i-th powers of the first n
positive integers:

n∑
k=1

ki =
i∑

j=0

(−1)ji!Bjn
i+1−j

(i+ 1− j)!j!

where Bj are the Bernoulli numbers.2

Since odd Bernoulli numbers are always 0, except for B1, we can simplify the above formula
for even and odd powers as follows:

n∑
k=1

k2i =
n2i

2
+

i∑
j=0

(2i)!B2jn
2i+1−2j

(2j)!(2i+ 1− 2j)!
(1)

n∑
k=1

k2i+1 =
n2i+1

2
+

i∑
j=0

(2i+ 1)!B2jn
2i+2−2j

(2j)!(2i+ 2− 2j)!
(2)

2 Indicator Function 1k|n

One key component of the method used to solve the generalized harmonic numbers is the
indicator function 1k|n, defined as 1 if k divides n, and 0 otherwise. This function and its
analog (that will appear in the next section) play a key role in the solution that is presented
here:

1k|n =
1

k

k∑
j=1

cos
2πnj

k

A closed-form for 1k|n can be obtained by means of the so-called Lagrange’s trigonometric
identities:

1k|n =
1

2k

sin (2πn+ πn
k

)

sin πn
k

− 1

2k
=

1

2k
sin 2πn cot

πn

k
+

cos 2πn− 1

2k
(3)
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We can also create a power series for 1k|n by expanding the cosine with Taylor series:

1k|n =
1

k

k∑
j=1

cos
2πnj

k
= 1 +

1

k

∞∑
i=1

(−1)i

(2i)!

(
2πn

k

)2i k∑
j=1

j2i

Now, by replacing the sum of j2i over j with Faulhaber’s formula, (1), we get:

1k|n = 1 +
1

k

∞∑
i=1

(−1)i

(2i)!

(
2πn

k

)2i
(
k2i

2
+

i∑
j=0

(2i)!B2jk
2i+1−2j

(2j)!(2i+ 1− 2j)!

)
⇒

1k|n =
cos 2πn− 1

2k
+
∞∑
i=0

(−1)i(2πn)2i
i∑

j=0

B2jk
−2j

(2j)!(2i+ 1− 2j)!
(4)

From (3) and (4), after re-scaling n to n/2, we conclude that:

∞∑
i=0

(−1)i(πn)2i
i∑

j=0

B2jk
−2j

(2i+ 1− 2j)!(2j)!
=

1

2k
cot

πn

2k
sin πn (5)

2.1 The Analog of 1k|n

Now, just as we created a power series for 1k|n, we have to create one for its analog, which
is the sum:

1

k

k∑
j=1

sin
2πnj

k

Again, we can find a closed-form for the above sum using Lagrange’s trigonometric identi-
ties:

1

k

k∑
j=1

sin
2πnj

k
= − 1

2k

cos (2πn+ πn
k

)

sin πn
k

+
1

2k
cot

πn

k
=

sin 2πn

2k
+

1

k
cot

πn

k
sin2 πn (6)

As previously, we can obtain a power series for the above by expanding the sine with Taylor
series and making use of (2):

1

k

k∑
j=1

sin
2πnj

k
=

sin 2πn

2k
+
∞∑
i=0

(−1)i(2πn)2i+1

i∑
j=0

B2jk
−2j

(2i+ 2− 2j)!(2j)!
(7)

From (6) and (7), after re-scaling n to n/2, it follows that:

∞∑
i=0

(−1)i(πn)2i+1

i∑
j=0

B2jk
−2j

(2i+ 2− 2j)!(2j)!
=

1

k
cot

πn

2k

(
sin

πn

2

)2
(8)
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3 Generalized Harmonic Numbers

3.1 Formula Rationale

The rationale to build a formula for Hk(n) is to use the Taylor series expansion of sin πk,
and exploit the fact that it’s 0 for all integer k. We refer to the below as initial equation (note
the k in the sum is not the same k used as subscript on Hk(n)):

sin πk = 0⇒ πk =
∞∑
i=1

−(−1)i(πk)2i+1

(2i+ 1)!
(9)

If we divide both sides of (9) by πk2 we end up with a power series for 1/k about 0 that
only holds for integer k (after all 1/k is not analytic at 0).

Besides, on the right-hand side of the resulting equation, the exponents of k are positive
integers, allowing us to apply Faulhaber’s formula mentioned in the introduction. By doing so
we end up with a convoluted power series that fortunately can be transformed into an integral
by means of the closed-form we derived for 1k|n (or its analog) using Lagrange’s identities.
That is a high level summary of the reasoning.

To not make this paper long, we only give two fully detailed demonstrations based on the
initial equation sinπk = 0, and jump straight to the final formulae in a few other cases, before
we state a general formula. We also briefly show how the outcomes change with the choice of
different initial equations.

3.2 Harmonic Number

We start by dividing both sides of (9) by πk2:

1

k
=
∞∑
i=1

−(−1)iπ2ik2i−1

(2i+ 1)!
=
∞∑
i=0

(−1)iπ2i+2k2i+1

(2i+ 3)!
(10)

Below we take the sum of (10) over k and use equation (2), thus extending the domain of
H1(n) (H(n) for short) to the real numbers, in an analytic continuation:

H(n) =
n∑
k=1

1

k
=
∞∑
i=0

(−1)iπ2i+2

(2i+ 3)!

n∑
k=1

k2i+1 =
∞∑
i=0

(−1)iπ2i+2

(2i+ 3)!

(
n2i+1

2
+

i∑
j=0

(2i+ 1)!B2jn
2i+2−2j

(2i+ 2− 2j)!(2j)!

)

H(n) =
∞∑
i=0

(−1)iπ2i+2n2i+1

2(2i+ 3)!
+
∞∑
i=0

(−1)iπ2i+2n2i+2

(2i+ 3)!

i∑
j=0

(2i+ 1)!B2jn
−2j

(2i+ 2− 2j)!(2j)!

The 1st sum is straightforward:

∞∑
i=0

(−1)iπ2i+2n2i+1

2(2i+ 3)!
= − 1

2πn2

∞∑
i=1

(−1)i(πn)2i+1

(2i+ 1)!
=

1

2πn2
(πn− sin πn)
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The 2nd sum is an exact power series for H(n)− 1/(2n) and can be rewritten as:

∞∑
i=0

(
− 1

2i+ 3
+

1

2i+ 2

)
(−1)iπ2i+2n2i+2

i∑
j=0

B2jn
−2j

(2i+ 2− 2j)!(2j)!
(11)

The above sums are tricky, but they can be obtained from (8), one of the formulae derived
previously. In order to do that, let’s replace (n, k) by (x, n) and define a function f(x, n) such
that:

f(x, n) =
∞∑
i=0

(−1)i(πx)2i+1

i∑
j=0

B2jn
−2j

(2i+ 2− 2j)!(2j)!
=

1

n
cot

πx

2n

(
sin

πx

2

)2
(12)

To build each piece of (11) we start from the above f(x, n).

For the 1st sum, we multiply f(x, n) by −π · x/n and integrate with respect to x as below:

− 1

n

∞∑
i=0

(−1)iπ2i+2

(∫ n

0

x2i+2 dx

) i∑
j=0

B2jn
−2j

(2i+ 2− 2j)!(2j)!
= −π

n

∫ n

0

xf(x, n) dx

−
∞∑
i=0

(−1)iπ2i+2n2i+2

2i+ 3

i∑
j=0

B2jn
−2j

(2i+ 2− 2j)!(2j)!
= −π

n

∫ n

0

x
1

n
cot

πx

2n

(
sin

πx

2

)2
dx

For the 2nd sum, we multiply f(x, n) by π and integrate with respect to x as below:

∞∑
i=0

(−1)iπ2i+2

(∫ n

0

x2i+1

) i∑
j=0

B2jn
−2j

(2i+ 2− 2j)!(2j)!
dx = π

∫ n

0

f(x, n) dx

∞∑
i=0

(−1)iπ2i+2n2i+2

2i+ 2

i∑
j=0

B2jn
−2j

(2i+ 2− 2j)!(2j)!
= π

∫ n

0

1

n
cot

πx

2n

(
sin

πx

2

)2
dx

Now, by summing up the two resulting integrals, we get the below equivalence (which holds
for all real n, not just integers):

∞∑
i=0

(−1)iπ2i+2n2i+2

(2i+ 3)!

i∑
j=0

(2i+ 1)!B2jn
−2j

(2i+ 2− 2j)!(2j)!
=

∫ n

0

π(n− x)

n2
cot

πx

2n

(
sin

πx

2

)2
dx

= π

∫ 1

0

u cot
π(1− u)

2

(
sin

πn(1− u)

2

)2

du

where we’ve used the transformation u = 1− x/n.
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Now, by adding up the simple part (disregarding sinπn and changing u for 1 − u), we
finally arrive at a formula for H(n):

n∑
k=1

1

k
=

1

2n
+
π

2

∫ 1

0

(1− u) (1− cosπnu) cot
πu

2
du (13)

This formula has a certain resemblance to Faulhaber’s formula, especially the term 1/(2n)
outside of the integral. If we compare this formula with the below, due to Euler,3 based on
the digamma function, it seems to me that the former is more natural and tractable than the
latter. The two functions approach one another very quickly as n gets large.

n∑
k=1

1

k
=

∫ 1

0

1− xn

1− x
dx = γ + ψ(n+ 1), where γ is the Euler-Mascheroni constant.

3.3 Harmonic Number of Order 2

We divide both sides of (10) by k:

1

k2
=
∞∑
i=0

(−1)iπ2i+2k2i

(2i+ 3)!

We sum the above over k, using equation (1) this time, noting that because equation (1)
doesn’t work exactly for i = 0, we need to make a little correction by adding up −1/2:

H2(n) =
n∑
k=1

1

k2
=
∞∑
i=0

(−1)iπ2i+2

(2i+ 3)!

n∑
k=1

k2i = −1

2

π2

3!
+
∞∑
i=0

(−1)iπ2i+2

(2i+ 3)!

(
n2i

2
+

i∑
j=0

(2i)!B2jn
2i+1−2j

(2i+ 1− 2j)!(2j)!

)

H2(n) = −1

2

π2

3!
+

1

2

∞∑
i=0

(−1)iπ2i+2n2i

(2i+ 3)!
+
∞∑
i=0

(−1)iπ2i+2n2i+1

(2i+ 3)!

i∑
j=0

(2i)!B2jn
−2j

(2i+ 1− 2j)!(2j)!

The 1st sum, again, is straightforward:

−1

2

π2

3!
+

1

2

∞∑
i=0

(−1)iπ2i+2n2i

(2i+ 3)!
= − 1

2πn3

∞∑
i=2

(−1)i(πn)2i+1

(2i+ 1)!
=

1

2πn3

(
πn− (πn)3

3!
− sin πn

)
The 2nd sum can be rewritten as:

∞∑
i=0

(
1

2(2i+ 3)
− 1

2i+ 2
+

1

2(2i+ 1)

)
(−1)iπ2i+2n2i+1

i∑
j=0

B2jn
−2j

(2i+ 1− 2j)!(2j)!

The above sums are tricky, but they can be derived from (5), another one of the formulae
derived previously. In order to do that, let’s replace (n, k) by (x, n) and define a function
g(x, n) such that:

g(x, n) =
∞∑
i=0

(−1)i(πx)2i
i∑

j=0

B2jn
−2j

(2i+ 1− 2j)!(2j)!
=

1

2n
cot

πx

2n
sin πx (14)
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To build each piece of (14) we start from g(x, n).

For the 1st sum, we multiply both sides of g(x, n) by π2/2 ·x2/n2 and integrate with respect
to x as below:

1

2n2

∞∑
i=0

(−1)iπ2i+2

(∫ n

0

x2i+2 dx

) i∑
j=0

B2jn
−2j

(2i+ 1− 2j)!(2j)!
=

π2

2n2

∫ n

0

x2g(x, n) dx

1

2

∞∑
i=0

(−1)iπ2i+2n2i+1

2i+ 3

i∑
j=0

B2jn
−2j

(2i+ 1− 2j)!(2j)!
=

π2

2n2

∫ n

0

x2
1

2n
cot

πx

2n
sin πx dx

For the 2nd sum, we multiply both sides of g(x, n) by −π2 ·x/n and integrate with respect
to x as below:

− 1

n

∞∑
i=0

(−1)iπ2i+2

(∫ n

0

x2i+1 dx

) i∑
j=0

B2jn
−2j

(2i+ 1− 2j)!(2j)!
=
−π2

n

∫ n

0

xg(x, n) dx

−
∞∑
i=0

(−1)iπ2i+2n2i+1

2i+ 2

i∑
j=0

B2jn
−2j

(2i+ 1− 2j)!(2j)!
=
−π2

n

∫ n

0

x
1

2n
cot

πx

2n
sin πx dx

For the 3rd sum, we multiply both sides of g(x, n) by π2/2 and integrate with respect to x
as below:

1

2

∞∑
i=0

(−1)iπ2i+2

(∫ n

0

x2i dx

) i∑
j=0

B2jn
−2j

(2i+ 1− 2j)!(2j)!
=
π2

2

∫ n

0

g(x, n) dx

1

2

∞∑
i=0

(−1)iπ2i+2n2i+1

2i+ 1

i∑
j=0

B2jn
−2j

(2i+ 1− 2j)!(2j)!
=
π2

2

∫ n

0

1

2n
cot

πx

2n
sin πx dx

Let’s summarize the convoluted part by summing up the three resulting integrals:

∞∑
i=0

(−1)iπ2i+2n2i+1

(2i+ 3)!

i∑
j=0

(2i)!B2jn
−2j

(2i+ 1− 2j)!(2j)!
=

∫ n

0

π2(n− x)2

4n3
cot

πx

2n
sin πx dx

=
π2

4

∫ 1

0

u2 sin πn(1− u) cot
π(1− u)

2
du

where we’ve made a change of variables, u = 1− x/n.

Now, by summing up the two parts, we get a formula for H2(n):

n∑
k=1

1

k2
=

1

2n2
− π2

12
+
π2

4

∫ 1

0

u2 sin πn(1− u) tan
πu

2
du,
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where the identity cot π(1− u)/2 = tan πu/2 was used.

In section (3.7) we find out the general polynomial, p2k(u), that goes under the integral
sign, and it’s convenient to move the constant −π2/12 under the integral sign (this also makes
the H2(n) formula look more similar to H(n)).

First, we note that for all positive integer n:∫ 1

0

sin πn(1− u) tan
πu

2
du = 1, which stems from the below equation:

H∗0 (n) =
n∑
k=1

1 = n = n+
1

2
− 1

2

∫ 1

0

sin πn(1− u) tan
πu

2
du = n+H0(n)

From the above we conclude that H0(n) = 0 for all positive integer n (this is not a usual
definition, but it will make sense when we reach section (3.7)). Therefore our modified formula
is:

n∑
k=1

1

k2
=

1

2n2
+ π2

∫ 1

0

(
− 1

12
+
u2

4

)
sin πn(1− u) tan

πu

2
du (15)

It can be proved that for all integer k ≥ 0:

lim
n→∞

∫ 1

0

u2k sinπn(1− u) tan
πu

2
du = 1⇒ lim

n→∞
H2(n) = π2

(
− 1

12
+

1

4

)
=
π2

6
= ζ(2)

The above limits are justified by Theorem 1, section (6.1.1), and Theorem 3, section (8.1).
The latter assumes that the closed-form of ζ(2k) is known, as the limits of the above integrals
stem from the limits of H2k(n) and vice-versa.

3.4 Harmonic Number of Order 3

We divide both sides of (10) by k2 and simplify:

H3(n) =
π2

3!
H1(n)− 1

2

∞∑
i=0

(−1)iπ2i+4n2i+1

(2i+ 5)!
−
∞∑
i=0

(−1)iπ2i+4n2i+2

(2i+ 5)!

i∑
j=0

(2i+ 1)!B2jn
−2j

(2i+ 2− 2j)!(2j)!
,

which gives us the below recurrence:

H3(n) =
π2

3!
H1(n) +

1

2πn4

(
πn− (πn)3

3!
− sin πn

)
− π3

12

∫ 1

0

u3 (1− cosπn(1− u)) tan
πu

2
dx

Performing all the necessary calculations, we get:

n∑
k=1

1

k3
=

1

2n3
+
π3

12

∫ 1

0

(
u− u3

)
(1− cosπn(1− u)) tan

πu

2
du (16)

9



Besides, due to the below identity, whose proof is given in section (8.2.1):

π3

12

∫ 1

0

(
u− u3

)
tan

πu

2
du = ζ(3), the previous equation can be rewritten as:

n∑
k=1

1

k3
=

1

2n3
+ ζ(3)− π3

12

∫ 1

0

(
u− u3

)
cosπn(1− u) tan

πu

2
du

And since the limit of H3(n) when n tends to infinity is ζ(3), it means that:

lim
n→∞

∫ 1

0

(
u− u3

)
cosπn(1− u) tan

πu

2
du = 0

3.5 Harmonic Number of Order 4

We divide both sides of (10) by k3 and simplify:

H4(n) =
π2

3!
H2(n) +

1

2

π4

5!
− 1

2

∞∑
i=0

(−1)iπ2i+4n2i

(2i+ 5)!
−
∞∑
i=0

(−1)iπ2i+4n2i+1

(2i+ 5)!

i∑
j=0

(2i)!B2jn
−2j

(2i+ 1− 2j)!(2j)!
,

which brings us to the below recurrence:

H4(n) =
π2

3!
H2(n)+

1

2πn5

(
πn− (πn)3

3!
+

(πn)5

5!
− sinπn

)
− π

4

48

∫ 1

0

u4 sin πn(1− u) tan
πu

2
du

Now, performing the calculations, we get the formula for H4(n):

n∑
k=1

1

k4
=

1

2n4
− 7π4

720
+ π4

∫ 1

0

(
u2

24
− u4

48

)
sin πn(1− u) tan

πu

2
du

Moving the constant under the integral sign, as we did for H2(n):

n∑
k=1

1

k4
=

1

2n4
+ π4

∫ 1

0

(
− 7

720
+
u2

24
− u4

48

)
sin πn(1− u) tan

πu

2
du (17)

Since each limit is 1, as mentioned in section (3.3), we conclude that the limit of H4(n) is:

ζ(4) = π4

(
− 7

720
+

1

24
− 1

48

)
=
π4

90

10



3.6 General Formula

As we’ve seen, lots of patterns emerge when we create formulae for H1(n), H2(n), and so
on. We now assume that these patterns always repeat and see if we can figure out what the
general rule is for each k.

Because in each case the term that goes outside of the integral sign is easy to deduce
(1/(2n2k) or 1/(2n2k+1)), we can focus on the polynomials in u that go under the integral sign,
p2k(u) and p2k+1(u), and see if we can find out their generating function, g(x).

Note that since for each recursive equation the coefficients π2k (or π2k+1) cancel out, we
can ignore them for simplification purposes.

3.7 Harmonic Numbers of Order 2k

Let f(u, n) be the below function (not to be confused with the same function from previous
sections):

f(u, n) = sin πn(1− u) tan
πu

2

As we’ve seen in previous sections, calculating the 2k-th harmonic number involves a re-
currence with prior ones:

H2k(n) =
1

2n2k

k∑
j=0

(−1)j(πn)2j

(2j + 1)!
−

k−1∑
j=0

(−1)k−jπ2k−2j

(2k + 1− 2j)!
H2j(n)− (−1)kπ2k

2(2k)!

∫ 1

0

u2kf(u, n) du

That is, the harmonic numbers of even orders obey the below recursive equations:

H0(n) = 1
2
− 1

2

∫ 1

0
f(u, n) du

H2(n) = π2

3!
H0(n) + 1

2πn3

(
πn− π3n3

3!

)
+ π2

2

∫ 1

0
u2

2!
f(u, n) du

H4(n) = π2

3!
H2(n)− π4

5!
H0(n) + 1

2πn5

(
πn− π3n3

3!
+ π5n5

5!

)
− π4

2

∫ 1

0
u4

4!
f(u, n) du

H6(n) = π2

3!
H4(n)− π4

5!
H2(n) + π6

7!
H0(n) + 1

2πn7

(
πn− π3n3

3!
+ π5n5

5!
− π7n7

7!

)
+ π6

2

∫ 1

0
u6

6!
f(u, n) du

...

Let’s try to solve that recurrence, we have:(
1− x2

3!
+
x4

5!
− x6

7!
+ · · ·

)(
p0 + p2x

2 + p4x
4 + p6x

6 + · · ·
)

= −1 +
u2

2!
x2 − u4

4!
x4 − u6

6!
x6 + · · ·

But the product on the left-hand side gives us:

p0 +

(
p2 −

1

3!
p0

)
x2 +

(
p4 −

1

3!
p2 +

1

5!
p0

)
x4 +

(
p6 −

1

3!
p4 +

1

5!
p2 −

1

7!
p0

)
x6 + · · · ,

11



where the coefficient of each x2k is the recurrence that produces the polynomials p2k that we’re
interested in. The generating function for p2k(u) is therefore given by:

g(x) = −x cosxu

sinx
= −1 +

(
−1

6
+
u2

2

)
x2 +

(
− 7

360
+
u2

12
− u4

24

)
x4 +

(
− 31

15120
+

7u2

720
− u4

144
+

u6

720

)
x6 + · · ·

To obtain the power series of the function g(x), we need to obtain the power series of each
of its components individually:1

x

sinx
=
∞∑
i=0

(−1)iB2i(2− 22i)

(2i)!
x2i, and − cosxu = −

∞∑
i=0

(−1)iu2i

(2i)!
x2i

Therefore, the 2k-th term of the power series of g(x) is p2k(u), which is given by the below
expression:

p2k(u) =
k∑
j=0

(−1)jB2j (2− 22j)

(2j)!
· (−1)k−j+1u2k−2j

(2k − 2j)!

Now, putting it all together, we get that for all integer k ≥ 1:

H2k(n) =
1

2n2k
+
π2k

2

∫ 1

0

p2k(u)f(u, n) du⇒

H2k(n) =
1

2n2k
− (−1)kπ2k

2

∫ 1

0

k∑
j=0

B2j (2− 22j)u2k−2j

(2j)!(2k − 2j)!
sin πn(1− u) tan

πu

2
du

Note that this formula applies to H0(n) as well, but remember that per this definition
H0(n) is such that H0(n) = 0 for all positive integer n.

We can rewrite H2k(n) by means of Bernoulli polynomials, which are given by:1

Bk(u) =
k∑
j=0

(
k

j

)
Bk−ju

j

In doing so we get an expression that resembles, but is not exactly, an Euler polynomial:1

H2k(n) =
1

2n2k
− (−1)kπ2k

(2k)!

∫ 1

0

(
B2k(u)− 22k−1B2k

(u
2

))
f(u, n) du

3.7.1 Generating Function of H2k(n)

A generating function for H2k(n) can be obtained by means of the generating function g(x),
that we previously found for p2k(u), as follows:

∞∑
k=0

H2k(n)x2k =
n2

2(n2 − x2)
− πx

2 sinπx

∫ 1

0

cosπxu sin πn(1− u) tan
πu

2
du

12



Note the convergence radius of the power series on the left-hand side is the open interval
(−1, 1), but the domain of the function on the right-hand side is R\Z. This generating function
is probably an analytic continuation of the power series to the left.

As an example, if n = 2 the above function is
5x2

4
+

17x4

16
+

65x6

64
+

257x8

256
+· · ·

Notice it doesn’t have the independent term, which is a result of H0(n) = 0 for all positive
integer n.

3.7.2 Limit of the Generating Function of H2k(n)

The limit of the generating function we just found as n goes to infinity is:

h(x) = lim
n→∞

∞∑
k=1

H2k(n)x2k = lim
n→∞

n2

2(n2 − x2)
− πx

2 sinπx

∫ 1

0

cosπxu sin πn(1− u) tan
πu

2
du⇒

h(x) =
∞∑
k=1

ζ(2k)x2k =
1

2
− πx cosπx

2 sinπx

Note h(x) also doesn’t have the independent term, due to H0(n) = 0.

Proof The proof of the above is simple:

lim
n→∞

∫ 1

0

cos πxu sin πn(1− u) tan
πu

2
du = lim

n→∞

∫ 1

0

∞∑
k=0

(−1)k(πxu)2k

(2k)!
sin πn(1− u) tan

πu

2
du⇒

lim
n→∞

∞∑
k=0

(−1)k(πx)2k

(2k)!

∫ 1

0

u2k sin πn(1− u) tan
πu

2
du = cosπx,

as the limits of the above integrals are always 1, per the two different proofs that are provided
in sections (6.1.1), Theorem 1, and (8.1), Theorem 3. �

3.8 Harmonic Numbers of Order 2k + 1

Let f(u, n) be the below function:

f(u, n) = (1− cos πn(1− u)) tan
πu

2

Calculating the odd harmonic numbers involves a recurrence with prior ones:

H2k+1(n) =
1

2n2k+1

k∑
j=0

(−1)j(πn)2j

(2j + 1)!
−
k−1∑
j=0

(−1)k−jπ2k−2j

(2k + 1− 2j)!
H2j+1(n) +

(−1)kπ2k+1

2(2k + 1)!

∫ 1

0
u2k+1f(u, n) du

13



The reasoning employed to figure out the generating function of p2k+1(u) is entirely anal-
ogous to what we’ve done previously, and g(x) is given by:

g(x) =
x sinxu

sinx
= ux+

(
u

6
− u3

6

)
x3 +

(
7u

360
− u3

36
+

u5

120

)
x5 +

(
31u

15120
− 7u3

2160
+

u5

720
− u7

5040

)
x7 + · · ·

The (2k + 1)-th term of the power series of g(x) is therefore:

p2k+1(u) = (−1)k
k∑
j=0

B2j (2− 22j)u2k+1−2j

(2j)!(2k + 1− 2j)!

Now, putting it all together, we get that for all integer k ≥ 0:

H2k+1(n) =
1

2n2k+1
+
π2k+1

2

∫ 1

0

p2k+1(u)f(u, n) du⇒

H2k+1(n) =
1

2n2k+1
+

(−1)kπ2k+1

2

∫ 1

0

k∑
j=0

B2j (2− 22j)u2k+1−2j

(2j)!(2k + 1− 2j)!
(1− cos πn(1− u)) tan

πu

2
du

Because of Theorem 8, section (8.2.1), we can also rewrite H2k+1(n) as:

H2k+1(n) =
1

2n2k+1
+ ζ(2k + 1)− (−1)kπ2k+1

2

∫ 1

0

k∑
j=0

B2j

(
2− 22j

)
u2k+1−2j

(2j)!(2k + 1− 2j)!
cosπn(1− u) tan

πu

2
du

Finally, with the aforementioned Bernoulli polynomials, we can also rewrite H2k+1(n) as:

H2k+1(n) =
1

2n2k+1
+

(−1)kπ2k+1

(2k + 1)!

∫ 1

0

(
B2k+1(u)− 22kB2k+1

(u
2

))
f(u, n) du

3.8.1 Generating Function of H2k+1(n)

A generating function for H2k+1(n) can be obtained from the function g(x) that we found for
p2k+1(u) previously, as follows:

∞∑
k=0

H2k+1(n)x2k+1 =
nx

2(n2 − x2)
+

πx

2 sinπx

∫ 1

0
sinπxu (1− cosπn(1− u)) tan

πu

2
du

For example, if n = 2, the above function becomes
3x

2
+

9x3

8
+

33x5

32
+

129x7

128
+· · ·

3.8.2 Limit of the Generating Function of H2k+1(n)

Before we can take the limit of this generating function as n approaches infinity, we need to
exclude term H1(n)x, since H(n) is unbounded. Hence, using the expression for H(n) from section
(3.2), the limit of the generating function as n increases is:

∞∑
k=1

H2k+1(n)x2k+1 =
nx

2(n2 − x2)
− x

2n
+
πx

2

∫ 1

0

(
sinπxu

sinπx
− u
)

(1− cosπn(1− u)) tan
πu

2
du⇒

14



h(x) =

∞∑
k=1

ζ(2k + 1)x2k+1 =
πx

2

∫ 1

0

(
sinπxu

sinπx
− u
)

tan
πu

2
du

Proof To prove that the generating function converges to the above limit, we need to show that the
below integral goes to 0 as n approaches infinity. But,∫ 1

0
(sinπxu− u sinπx) cosπn(1− u) tan

πu

2
du =

∫ 1

0

∞∑
k=0

(−1)k(πx)2k+1
(
u2k+1 − u

)
(2k + 1)!

cosπn(1− u) tan
πu

2
du

it follows that lim
n→∞

∞∑
k=0

(−1)k(πx)2k+1

(2k + 1)!

∫ 1

0

(
u2k+1 − u

)
cosπn(1− u) tan

πu

2
du = 0,

as the limits of the integrals are 0, per Corollary 1 of section (6.2.1). �

The above representation of the generating function of ζ(2k + 1) is different from the one found
in the literature, which employs the digamma function, though they must be equivalent:

h(x) =
∞∑
k=1

ζ(2k + 1)x2k+1 = −xγ − x

2
(ψ(1 + x) + ψ(1− x))

3.9 Initial Equation sin 2πk = 0

In this section we set the initial equation to sin 2πk = 0. To avoid redundancy, we omit the step
by step demonstrations and present only the final formulae.

Using this initial equation, we get slightly different formulae for H(n) and H2(n):

n∑
k=1

1

k
=

1

2n
+ π

∫ 1

0
(1− u) (1− cos 2πnu) cotπu du

n∑
k=1

1

k2
=

1

2n2
− π2

3
− π2

∫ 1

0
u2 sin 2πn(1− u) cotπu du

3.9.1 General Formula

We conclude that not much really changes in the system of recurrence equations, except for the
introduction of a coefficient 2 on π. Therefore, the polynomial solution is the same as before, only
the multiplier of the integral and the integrand change.

3.9.2 Harmonic Numbers of Order 2k

The recurrence equation changes slightly:

H2k(n) =
1

2n2k

k∑
j=0

(−1)j(2πn)2j

(2j + 1)!
−
k−1∑
j=0

(−1)k−j(2π)2k−2j

(2k + 1− 2j)!
H2j(n)+

(−1)k(2π)2k

2(2k)!

∫ 1

0
u2k sin 2πn(1− u) cotπu du

For all integer k ≥ 0:

H2k(n) =
1

2n2k
+

(−1)k(2π)2k

2

∫ 1

0

k∑
j=0

B2j

(
2− 22j

)
u2k−2j

(2j)!(2k − 2j)!
sin 2πn(1− u) cotπu du,
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3.9.3 Harmonic Numbers of Order 2k + 1

The recurrence equation also changes slightly:

H2k+1(n) =
1

2n2k+1

k∑
j=0

(−1)j(2πn)2j

(2j + 1)!
−
k−1∑
j=0

(−1)k−j(2π)2k−2j

(2k + 1− 2j)!
H2j+1(n)

− (−1)k(2π)2k+1

2(2k + 1)!

∫ 1

0
u2k+1 (1− cos 2πn(1− u)) cotπu du

For all integer k ≥ 0:

H2k+1(n) =
1

2n2k+1
− (−1)k(2π)2k+1

2

∫ 1

0

k∑
j=0

B2j

(
2− 22j

)
u2k+1−2j

(2j)!(2k + 1− 2j)!
(1− cos 2πn(1− u)) cotπu du

Here the integral sign has changed due to cotπ(1− u) = − cotπu.

3.10 Initial Equation cos 2πk = 1

When we switch to cosine-based harmonic numbers, the degree of the polynomials pk(u) go up
by one. Below are two examples for H(n) and H2(n):

n∑
k=1

1

k
=

1

2n
− π

∫ 1

0
u2 (1− cos 2πn(1− u)) cotπu du

n∑
k=1

1

k2
=

1

2n2
− π2

6
− 2π2

3

∫ 1

0
u3 sin 2πn(1− u) cotπu du

3.10.1 General Formula

Using this initial equation, we add more entropy to the formula. Here we only show a detailed
demonstration for the odd case, and the even case is just stated.

3.10.2 Harmonic Numbers of Order 2k

H2k(n) is given by the below recurrence equation:

H2k(n) =
1

n2k

k∑
j=0

(−1)j(2πn)2j

(2j + 2)!
−2

k−1∑
j=0

(−1)k−j(2π)2k−2j

(2k + 2− 2j)!
H2j(n)+

(−1)k(2π)2k

(2k + 1)!

∫ 1

0
u2k+1 sin 2πn(1− u) cotπu du

The polynomial p2k(u) can be obtained using a similar approach to p2k+1(u) (see the next section
for a detailed demonstration), which results in the formula below:

H2k(n) =
1

2n2k
+

(−1)kπ2k

2

∫ 1

0

k∑
i=0

i∑
j=0

B2jB2i−2j
(
2− 22j

) (
2− 22i−2j

)
(2u)2k+1−2i

(2j)!(2i− 2j)!(2k + 1− 2i)!
sin 2πn(1− u) cotπu du

16



3.10.3 Harmonic Numbers of Order 2k + 1

Let f(u, n) be the below function:

f(u, n) = (1− cos 2πn(1− u)) cotπu

H2k+1(n) is given by the below recurrence equation:

H2k+1(n) =
1

n2k+1

k∑
j=0

(−1)j(2πn)2j

(2j + 2)!
−2

k−1∑
j=0

(−1)k−j(2π)2k−2j

(2k + 2− 2j)!
H2j+1(n)−(−1)k(2π)2k+1

(2k + 2)!

∫ 1

0
u2k+2f(u, n) du

That is, the harmonic numbers of odd orders obey the below recursive equations (notice we’re
ignoring cos 2πn− 1):

H1(n) = 1
2n −

2π
2!

∫ 1
0 u

2f(u, n) du

H3(n) = 2 (2π)2

4! H1(n) + 1
n3

(
1
2! −

(2πn)2

4!

)
+ (2π)3

4!

∫ 1
0 u

4f(u, n) du

H5(n) = 2
(
(2π)2

4! H3(n)− (2π)4

6! H1(n)
)

+ 1
n5

(
1
2! −

(2πn)2

4! + (2πn)4

6!

)
− (2π)5

6!

∫ 1
0 u

6f(u, n) du

H7(n) = 2
(
(2π)2

4! H5(n)− (2π)4

6! H3(n) + (2π)6

8! H1(n)
)

+ 1
n7

(
1
2! −

(2πn)4

4! + (2πn)4

6! − (2πn)6

8!

)
+ (2π)7

8!

∫ 1
0 u

8f(u, n) du

...

,

Let p(x) be the generating function that we’re interested in. We have:

p(x)− p(x)
1

2x2

(
cos 2x− 1 +

(2x)2

2

)
= −

∞∑
k=0

(−1)k22k+1u2k+2

(2k + 2)!
x2k+1 =

1

2x
(cos 2ux− 1)⇒

p1x+
(
−p1

3
+ p3

)
x3 +

(
2p1
45
− p3

3
+ p5

)
x5 +

(
− p1

315
+

2p3
45
− p5

3
+ p7

)
x7 + · · · =

− u2x+
u4

3
x3 − 2u6

45
x5 +

u8

315
x7 + · · ·

The generating function for p2k+1(u) is therefore given by:

g(x) =
( x

sinx

)2 cos 2ux− 1

2x
= −u2x+

(
−u

2

3
+
u4

3

)
x3+

(
−u

2

15
+
u4

9
− 2u6

45

)
x5+

(
−2u2

189
+
u4

45
− 2u6

135
+

u8

315

)
x7+· · ·

where we’ve used the transformation: − x cos 2ux− 1

cos 2x− 1 + (2x)2

2 − 2x2
= −xcos 2xu− 1

cos 2x− 1
= x

cos 2ux− 1

2 sin2 x

To obtain the power series of g(x), we need to obtain the power series of each function individually:( x

sinx

)2
=

∞∑
i=0

i∑
j=0

(−1)iB2jB2i−2j
(
2− 22j

) (
2− 22i−2j

)
(2j)!(2i− 2j)!

x2i, and
cos 2xu− 1

x
=

∞∑
i=1

(−1)i(2u)2i

(2i)!
x2i−1

Therefore, the (2k + 1)-th term of the power series of g(x) is given by:

p2k+1(u) =
1

2

k∑
i=0

i∑
j=0

(−1)iB2jB2i−2j
(
2− 22j

) (
2− 22i−2j

)
(2j)!(2i− 2j)!

· (−1)k+1−i(2u)2k+2−2i

(2k + 2− 2i)!
,

which goes into the final formula:

H2k+1(n) =
1

2n2k+1
+ π2k+1

∫ 1

0
p2k+1(u) (1− cos 2πn(1− u)) cotπu du
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4 Alternating Harmonic Numbers: C2
k(n)

Setting the initial equation to cosπk = (−1)k drastically changes the picture. It no longer enables
us to calculate Hk(n), but the alternating harmonic numbers instead, C2

k(n).

Below are a couple of examples of formulae for the alternating harmonic numbers:

C2
1 (n) =

n∑
k=1

(−1)k

k
= H1(n) +

1

2n
(−1 + cosπn)− π

2

∫ 1

0
(1− cosπn(1− u)) tan

πu

2
du

C2
2 (n) =

n∑
k=1

(−1)k

k2
= H2(n) +

1

2n2

(
−1 +

(πn)2

2!
+ cosπn

)
− π2

2

∫ 1

0
u sinπn(1− u) tan

πu

2
du

4.1 General Formula: C2
k(n)

The recurrence equations for the generalized alternating harmonic numbers are:

C2
2k(n) =

n∑
j=1

(−1)j

j2k
=

1

2n2k

cosπn−
k∑
j=0

(−1)j(πn)2j

(2j)!

+

k∑
j=0

(−1)k−jπ2k−2j

(2k − 2j)!
H2j(n)

+
(−1)kπ2k

2(2k − 1)!

∫ 1

0
u2k−1 sinπn(1− u) tan

πu

2
du

C2
2k+1(n) =

n∑
j=1

(−1)j

j2k+1
=

1

2n2k+1

cosπn−
k∑
j=0

(−1)j(πn)2j

(2j)!

+
k∑
j=0

(−1)k−jπ2k−2j

(2k − 2j)!
H2j+1(n)

− (−1)kπ2k+1

2(2k)!

∫ 1

0
u2k (1− cosπn(1− u)) tan

πu

2
du

5 Odd Alternating Harmonic Numbers: S4
k(n)

If we set the initial equation to sinπk/2, we are able to obtain formulae for the odd alternating
harmonic numbers, S4

k(n).

Two examples of formulae for the odd alternating harmonic numbers are below:

S4
1(n) =

n∑
k=1

1

k
sin

πk

2
=

1

2n

(
−πn

2
+ sin

πn

2

)
+
π

4

∫ 1

0
sin

πn(1− u)

2

(
sec

πu

2
+ tan

πu

2

)
du

S4
2(n) =

n∑
k=1

1

k2
sin

πk

2
=
π

2
H1(n)+

1

2n2

(
−πn

2
+ sin

πn

2

)
−π

2

8

∫ 1

0
u

(
1− cos

πn(1− u)

2

)(
sec

πu

2
+ tan

πu

2

)
du
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5.1 General Formula: S4
k(n)

The recurrence equations for the generalized odd alternating harmonic numbers are:

S4
2k(n) =

n∑
j=1

1

j2k
sin

πj

2
=

1

2n2k

sin
πn

2
−
k−1∑
j=0

(−1)j(πn2 )2j+1

(2j + 1)!

− k−1∑
j=0

(−1)k−j(π2 )2k−1−2j

(2k − 1− 2j)!
H2j+1(n)

+
(−1)k(π2 )2k

2(2k − 1)!

∫ 1

0
u2k−1

(
1− cos

πn(1− u)

2

)(
sec

πu

2
+ tan

πu

2

)
du

S4
2k+1(n) =

n∑
j=1

1

j2k+1
sin

πj

2
=

1

2n2k+1

sin
πn

2
−

k∑
j=0

(−1)j(πn2 )2j+1

(2j + 1)!

+
k∑
j=0

(−1)k−j(π2 )2k+1−2j

(2k + 1− 2j)!
H2j(n)

+
(−1)k(π2 )2k+1

2(2k)!

∫ 1

0
u2k sin

πn(1− u)

2

(
sec

πu

2
+ tan

πu

2

)
du

6 General Formula: Cm
k (n) and Smk (n)

There’s a striking similarity between the formulae derived from initial equation cosπk = 1 and
the ones derived with sinπk/2. Based on this similarity, we are able to generalize the pattern.

6.1 Cm
2k(n) and Sm2k+1(n)

We’ve grouped these two under the same section because they share an integral and they both
have H2j(n) in their recursions.

For all complex m, Cm2k(n) and Sm2k+1(n) are given by:

Cm2k(n) =

n∑
j=1

1

j2k
cos

2πj

m
=

1

2n2k

cos
2πn

m
−

k∑
j=0

(−1)j(2πnm )2j

(2j)!

+

k∑
j=0

(−1)k−j(2πm )2k−2j

(2k − 2j)!
H2j(n)

+
(−1)k(2πm )2k

2(2k − 1)!

∫ 1

0
(1− u)2k−1 sin

2πnu

m
cot

πu

m
du, ∀ integer k ≥ 1

Sm2k+1(n) =

n∑
j=1

1

j2k+1
sin

2πj

m
=

1

2n2k+1

sin
2πn

m
−

k∑
j=0

(−1)j(2πnm )2j+1

(2j + 1)!

+

k∑
j=0

(−1)k−j(2πm )2k+1−2j

(2k + 1− 2j)!
H2j(n)

+
(−1)k(2πm )2k+1

2(2k)!

∫ 1

0
(1− u)2k sin

2πnu

m
cot

πu

m
du, ∀ integer k ≥ 0

Notice that in order for these equations to hold, we need to have H0(n) = 0 for all positive integer
n, as mentioned before.
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6.1.1 Limits of Cm
2k(n) and Sm2k+1(n)

At infinity, Cm2k(n) and Sm2k+1(n) become Fourier series, denoted here by Cm2k and Sm2k+1, whose
closed-forms are given by Bernoulli polynomials, per Abramowitz and Stegun:1

∞∑
j=1

1

j2k
cos 2πxj =

−(−1)k(2π)2k

2(2k)!
B2k(x) and

∞∑
j=1

1

j2k+1
sin 2πxj =

(−1)k(2π)2k+1

2(2k + 1)!
B2k+1(x)

The above result implies the following theorem, which holds for all integer k ≥ 0 and real m ≥ 1:

Theorem 1 lim
n→∞

∫ 1

0
(1− u)k sin

2πnu

m
cot

πu

m
du =

{
1, if k = 0 and m = 1
m
2 , otherwise

Therefore, with the exception of S1
1 = 0, the limits of Cm2k(n) and Sm2k+1(n), for real m ≥ 1, are

given by:

Cm2k =
∞∑
j=1

1

j2k
cos

2πj

m
=

k∑
j=0

(−1)k−j
(
2π
m

)2k−2j
(2k − 2j)!

ζ(2j) +
(−1)km

4(2k − 1)!

(
2π

m

)2k

(∀ k ≥ 1)

Sm2k+1 =
∞∑
j=1

1

j2k+1
sin

2πj

m
=

k∑
j=0

(−1)k−j
(
2π
m

)2k+1−2j

(2k + 1− 2j)!
ζ(2j) +

(−1)km

4(2k)!

(
2π

m

)2k+1

(∀ k ≥ 0)

These are just rewrites of the expressions for Cm2k and Sm2k+1 from reference [1], with x = 1/m.

6.2 Cm
2k+1(n) and Sm2k(n)

For all complex m, Cm2k+1(n) and Sm2k(n) are given by:

Cm2k+1(n) =
n∑
j=1

1

j2k+1
cos

2πj

m
=

1

2n2k+1

cos
2πn

m
−

k∑
j=0

(−1)j(2πnm )2j

(2j)!

+
k∑
j=0

(−1)k−j(2πm )2k−2j

(2k − 2j)!
H2j+1(n)

−
(−1)k(2πm )2k+1

2(2k)!

∫ 1

0
(1− u)2k

(
1− cos

2πnu

m

)
cot

πu

m
du, ∀ integer k ≥ 0

Sm2k(n) =

n∑
j=1

1

j2k
sin

2πj

m
=

1

2n2k

sin
2πn

m
−
k−1∑
j=0

(−1)j(2πnm )2j+1

(2j + 1)!

−k−1∑
j=0

(−1)k−j(2πm )2k−1−2j

(2k − 1− 2j)!
H2j+1(n)

+
(−1)k(2πm )2k

2(2k − 1)!

∫ 1

0
(1− u)2k−1

(
1− cos

2πnu

m

)
cot

πu

m
du, ∀ integer k ≥ 1

6.2.1 Limits of Cm
2k+1(n) and Sm2k(n)

Before taking the limit of Cm2k+1(n) and Sm2k(n) as n tends to infinity, we need to remove H(n)
from the second sum (since it explodes to infinity), and recombine it with the integral.
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In order to do that, we need to use one of the three formulae we created for H(n) in sections
(3.2), (3.9) and (3.10). Since the last two are almost identical, let’s consider only the first two:

H(n)− 1

2n
=
π

2

∫ 1

0
(1− u) (1− cosπnu) cot

πu

2
du = π

∫ 1

0
(1− u) (1− cos 2πnu) cotπu du

By using either one of these formulae, we can carve out two integrals, one that doesn’t depend
on n and one that does, as in the below example:

Cm2k+1(n) =
1

2n2k+1

cos
2πn

m
−

k∑
j=0

(−1)j(2πnm )2j

(2j)!

+
k∑
j=1

(−1)k−j(2πm )2k−2j

(2k − 2j)!
H2j+1(n)−

(−1)k(2πm )2k+1

2(2k)!(
− m

2πn
+

∫ 1

0
(1− u)2k cot

πu

m
−m(1− u) cotπu du−

∫ 1

0
(1− u)2k cos

2πnu

m
cot

πu

m
−m(1− u) cos 2πnu cotπu du

)

Therefore, to know the limit of Cm2k+1(n), we need to know the limit of the integral to the right
as n grows. This limit is given in the following theorem, which holds for all integer k ≥ 0 and real
m ≥ 1 (except k = 0 and m = 1), and for which we don’t provide a proof:

Theorem 2 lim
n→∞

∫ 1

0
(1− u)k cos

2πnu

m
cot

πu

m
−m(1− u) cos 2πnu cotπu du =

m log(m)

π

This limit apparently doesn’t exist in the literature. Theorem 2 allows us to deduce the following
corollary:

Corollary 1 lim
n→∞

∫ 1

0

(
uk − u

)
cosπn(1− u) tan

πu

2
du = 0 ∀ integer k ≥ 0

Proof 1 This result stems from Theorem 2 and the fact we can write Cm2k+1(n) or Sm2k(n) using
different formulae for H(n), which leads to an equation:∫ 1

0
(1−u)k cos

2πnu

m
cot

πu

m
−m

2
(1−u) cosπnu cot

πu

2
du−

∫ 1

0
(1−u)k cot

πu

m
−m

2
(1−u) cot

πu

2
du

=

∫ 1

0
(1−u)k cos

2πnu

m
cot

πu

m
−m(1−u) cos 2πnu cotπu du−

∫ 1

0
(1−u)k cot

πu

m
−m(1−u) cotπu du⇒

∫ 1

0
(1−u)k cos

2πnu

m
cot

πu

m
−m

2
(1−u) cosπnu cot

πu

2
du =

∫ 1

0
(1−u)k cos

2πnu

m
cot

πu

m
−m(1−u) cos 2πnu cotπu du

+

∫ 1

0
m(1− u) cotπu− m

2
(1− u) cot

πu

2
du

Now, by making m = 2 and using Theorem 2, it follows from the above relation that:

lim
n→∞

∫ 1

0

(
uk − u

)
cosπn(1− u) tan

πu

2
du =

2 log(2)

π
+

∫ 1

0
2(1− u) cotπu− (1− u) cot

πu

2
du = 0. �
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Now that we have Theorem 2, we can figure out the limits of Cm2k+1(n) and Sm2k(n) which, except
for C1

1 =∞, are given by:

Cm2k+1 =
∞∑
j=1

1

j2k+1
cos

2πj

m
=

k∑
j=1

(−1)k−j
(
2π
m

)2k−2j
(2k − 2j)!

ζ(2j + 1) +
(−1)k log(m)

(
2π
m

)2k
(2k)!

−
(−1)k(2πm )2k+1

2(2k)!

∫ 1

0
(1− u)2k cot

πu

m
−m(1− u) cotπu du

Sm2k =

∞∑
j=1

1

j2k
sin

2πj

m
= −

k−1∑
j=1

(−1)k−j
(
2π
m

)2k−1−2j
(2k − 1− 2j)!

ζ(2j + 1)−
(−1)k log(m)

(
2π
m

)2k−1
(2k − 1)!

+
(−1)k(2πm )2k

2(2k − 1)!

∫ 1

0
(1− u)2k−1 cot

πu

m
−m(1− u) cotπu du

Note that H(n) diverges because
∫ 1
0 cotπu− (1− u) cotπu du diverges.

7 Example: Infinite Sum of H(n)/n2

In this section, we derive expressions for sums of the type Hk(n)/nr, over the positive integers
n, with k odd and r even, and vice-versa. We will not try to get the result for k and r both even or
odd, because these cases lead to integrals that are very hard to evaluate.

Hence, let’s start with an example. We want to obtain the sum of H(n)/n2 over the positive
integers using the formula for H(n) from section (3.9):

H(n) =
1

2n
+ π

∫ 1

0
u (1− cos 2πn(1− u)) cotπ(1− u) du⇒

∞∑
n=1

H(n)

n2
=

∞∑
n=1

1

n2

(
1

2n
+ π

∫ 1

0
(1− u) (1− cos 2πnu) cotπu du

)
=

1

2
ζ(3) + π

∫ 1

0
(1− u)

(
ζ(2)−

∞∑
n=1

1

n2
cos 2πnu

)
cotπu du

The Fourier series can be simplified using the results from section (6.1.1), giving us:

∞∑
n=1

H(n)

n2
=

1

2
ζ(3) + π3

∫ 1

0
u(1− u)2 cotπu du = 2ζ(3)

7.1 General Formula: Sum of H2k(n)/n2r+1

Here we use the formula for H2k(n) from section (3.9.2), with a slight transformation only valid
for integer n:

∞∑
n=1

H2k(n)

n2r+1
=
∞∑
n=1

1

n2r+1

 1

2n2k
− (−1)k(2π)2k

2

∫ 1

0

k∑
j=0

B2j

(
2− 22j

)
u2k−2j

(2j)!(2k − 2j)!
sin 2πnu cotπu du
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∞∑
n=1

H2k(n)

n2r+1
=
ζ(2k + 2r + 1)

2
− (−1)k(2π)2k

2

∫ 1

0

k∑
j=0

B2j

(
2− 22j

)
u2k−2j

(2j)!(2k − 2j)!

( ∞∑
n=1

sin 2πnu

n2r+1

)
cotπu du

Now, the closed-form of the Fourier series above, after a change of variables, u = 1/m, is given
by:

∞∑
n=1

sin 2πnu

n2r+1
=

r∑
i=0

(−1)r−iζ(2i)(2πu)2r+1−2i

(2r + 1− 2i)!
+

(−1)r(2π)2r+1u2r

4(2r)!
= −(−1)r(2π)2r+1

2(2r + 1)!
B2r+1(u)

Therefore, we can express the sum as function of Bernoulli polynomials, and it’s finite for all
integer r ≥ 1:

∞∑
n=1

H2k(n)

n2r+1
=
ζ(2k + 2r + 1)

2
+

(−1)k+r(2π)2k+2r+1

2(2k)!(2r + 1)!

∫ 1

0

(
B2k(u)− 22k−1B2k

(u
2

))
B2r+1(u) cotπu du

If k = 0 the sum is always zero (since H0(n) = 0), which enables us to deduce another integral
representation for ζ(2r + 1), which happens to coincide with the one in Abramowitz and Stegun:1

ζ(2r + 1) = −(−1)r(2π)2r+1

2(2r + 1)!

∫ 1

0
B2r+1(u) cotπu du

7.2 General Formula: Sum of H2k+1(n)/n2r

Here we use the formula for H2k+1(n) from section (3.9.3), though we could’ve used the two others
as well (notice we made a transformation only valid for integer n):

∞∑
n=1

H2k+1(n)

n2r
=

∞∑
n=1

1

n2r

 1

2n2k+1
− (−1)k(2π)2k+1

2

∫ 1

0

k∑
j=0

B2j

(
2− 22j

)
u2k+1−2j

(2j)!(2k + 1− 2j)!
(1− cos 2πnu) cotπu du


∞∑
n=1

H2k+1(n)

n2r
=
ζ(2k + 1 + 2r)

2
− (−1)k(2π)2k+1

2

∫ 1

0

k∑
j=0

B2j

(
2− 22j

)
u2k+1−2j

(2j)!(2k + 1− 2j)!

( ∞∑
n=1

1− cos 2πnu

n2r

)
cotπu du

Now, the closed-form of the Fourier series featured in the above equation is given in section (6.1.1),
and it can also be expressed as Bernoulli polynomials. That is, after a change of variables, u = 1/m,
we get:

∞∑
n=1

cos 2πnu

n2r
=

r∑
i=0

(−1)r−iζ(2i)(2πu)2r−2i

(2r − 2i)!
+

(−1)r(2π)2ru2r−1

4(2r − 1)!
= −(−1)r(2π)2r

2(2r)!
B2r(u)

In a way, the closed-form from section (6.1.1) is more general than the Bernoulli polynomial. For
instance, when the denominator here is n2r+1 instead of n2r, we can use its analogous form from
section (6.2.1), which is no longer a Bernoulli polynomial.

That said, for integer k ≥ 0 and r ≥ 1, we can write:

∞∑
n=1

H2k+1(n)

n2r
=
ζ(2k + 1 + 2r)

2

− (−1)k(2π)2k+1

(2k + 1)!

∫ 1

0

(
B2k+1(u)− 22kB2k+1

(u
2

))(
ζ(2r) +

(−1)r(2π)2r

2(2r)!
B2r(u)

)
cotπu du
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Or, although we lose the validity of the formula for k = 0, we can rewrite the sum as:

∞∑
n=1

H2k+1(n)

n2r
=
ζ(2k + 1 + 2r)

2
+ ζ(2k + 1)ζ(2r)

− (−1)k+r(2π)2k+1+2r

2(2k + 1)!(2r)!

∫ 1

0

(
B2k+1(u)− 22kB2k+1

(u
2

))
B2r(u) cotπu du

8 Limits of the Integrals

8.1 Limits of the Integrals on the H2k(n) Recursions

In this section we present proofs for the limits of the integrals that appear on the recursions
of H2k(n) from sections (3.7), (3.9.2) and (3.10.2). This approach requires prior knowledge of the
closed-forms of ζ(2k), as mentioned in sections (3.3) and (3.5).

Looking back at the set of recurrence equations from the aforementioned sections, it’s evident
that we can express each integral as a function of H2j(n):

∫ 1

0
u2k sinπn(1− u) tan

πu

2
du =

−2(−1)k(2k)!

π2k

 k∑
j=1

(−1)k−jπ2k−2j

(2k + 1− 2j)!
H2j(n)− 1

2n2k

k∑
j=0

(−1)j(πn)2j

(2j + 1)!


∫ 1

0
u2k sin 2πn(1− u) cotπu du =

2(−1)k(2k)!

(2π)2k

 k∑
j=1

(−1)k−j(2π)2k−2j

(2k + 1− 2j)!
H2j(n)− 1

2n2k

k∑
j=0

(−1)j(2πn)2j

(2j + 1)!


∫ 1

0
u2k+1 sin 2πn(1− u) cotπu du =

2(−1)k(2k + 1)!

(2π)2k

 k∑
j=1

(−1)k−j(2π)2k−2j

(2k + 2− 2j)!
H2j(n)− 1

2n2k

k∑
j=0

(−1)j(2πn)2j

(2j + 2)!


We can deduce the limits of these integrals based on the closed-forms of ζ(2k). Conversely,

knowing these limits allows us to deduce the closed-forms of ζ(2k).

Theorem 3 lim
n→∞

∫ 1

0
u2k sinπn(1− u) tan

πu

2
du = 1 ∀ integer k ≥ 0

Proof 3 This integral appears with initial equation sinπk = 0 and per Theorem 1, section (6.1.1),
its limit is m/2 = 1, which we shall confirm now. By taking the limit of the integral as n approaches
infinity, we have:

lim
n→∞

∫ 1

0
u2k sinπn(1− u) tan

πu

2
du =

−2(−1)k(2k)!

π2k

 k∑
j=1

(−1)k−jπ2k−2j

(2k − 2j + 1)!
ζ(2j)− (−1)kπ2k

2(2k + 1)!


=
−2(−1)k(2k)!

π2k

k∑
j=0

(−1)k−jπ2k−2j

(2k − 2j + 1)!
ζ(2j) = (2k)!

k∑
j=0

22jB2j

(2k − 2j + 1)!(2j)!
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(Note that H0(n) = 0, but ζ(0) = −1/2.) Now, to complete the proof, let’s show that the above
sum equals 1 for all integer k ≥ 0. For that, let g(x) be the product of the two below functions:

x cothx = x
ex + e−x

ex − e−x
=
∞∑
j=0

22jB2j

(2j)!
x2j , and sinhx =

ex − e−x

2
=
∞∑
j=0

1

(2j + 1)!
x2j+1 ⇒

g(x) = x cothx sinhx =
∞∑
k=0

k∑
j=0

22jB2j

(2j)!
x2j · 1

(2k − 2j + 1)!
x2k−2j+1 ⇒

g(x) =
∞∑
k=0

 k∑
j=0

22jB2j

(2k − 2j + 1)!(2j)!

x2k+1 = x
ex + e−x

2
= x coshx =

∞∑
k=0

1

(2k)!
x2k+1,

which implies the theorem. �

Theorem 4 lim
n→∞

∫ 1

0
uk sin 2πn(1− u) cotπu du =

{
−1, if k = 0

−1
2 , if integer k ≥ 1

Proof 4 This integral appears with initial equations sin 2πk = 0 and cos 2πk = 1. Here we only prove
the case sin 2πk = 0, though case cos 2πk = 1 should follow a similar reasoning and be straightforward.

By taking the limit of the integral as n goes to infinity, we have:

lim
n→∞

∫ 1

0
u2k sin 2πn(1− u) cotπu du =

2(−1)k(2k)!

(2π)2k

 k∑
j=1

(−1)k−j(2π)2k−2j

(2k − 2j + 1)!
ζ(2j)− (−1)k(2π)2k

2(2k + 1)!


=

2(−1)k(2k)!

(2π)2k

k∑
j=0

(−1)k−j(2π)2k−2j

(2k − 2j + 1)!
ζ(2j) = −(2k)!

k∑
j=0

B2j

(2k − 2j + 1)!(2j)!

Now, to complete the proof, let’s show that the above sum equals −1 if k = 0, or −1/2 if k ≥ 1.
For that, let g(x) be the product of the two below functions, that also appeared in the proof of
Theorem 3, only now the cotangent is re-scaled:

x

2
coth

x

2
=

∞∑
j=0

B2j

(2j)!
x2j , and sinhx =

∞∑
j=0

1

(2j + 1)!
x2j+1

Therefore, we have:

g(x) =
x

2
coth

x

2
sinhx =

∞∑
k=0

k∑
j=0

B2j

(2j)!
x2j · 1

(2k − 2j + 1)!
x2k−2j+1 ⇒

g(x) =
∞∑
k=0

 k∑
j=0

B2j

(2k − 2j + 1)!(2j)!

x2k+1 =
x

2

(
1 +

ex + e−x

2

)
= x+

∞∑
k=1

1

2(2k)!
x2k+1,

which implies the theorem. �
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8.1.1 Limit of H2k(n)

The limit of H2k(n) as n approaches infinity is ζ(2k) for all integer k ≥ 0, which is proved in the
two following theorems:

Theorem 5 lim
n→∞

1

2n2k
− (−1)kπ2k

2

∫ 1

0

k∑
j=0

B2j

(
2− 22j

)
u2k−2j

(2j)!(2k − 2j)!
sinπn(1− u) tan

πu

2
du = ζ(2k)

Proof 5 First we note that due to Theorem 3, the above limit reduces to:

−(−1)kπ2k

2

k∑
j=0

B2j

(
2− 22j

)
(2j)!(2k − 2j)!

Now we can prove that the above expression equals ζ(2k), using the same approach from the
previous section:

∞∑
k=0

x2k
k∑
j=0

B2j

(
2− 22j

)
(2j)!(2k − 2j)!

=

∞∑
k=0

k∑
j=0

(
2− 22j

)
B2jx

2j

(2j)!
· x2k−2j

(2k − 2j)!
=
(
x coth

x

2
− x cothx

)
coshx

= x cothx =
∞∑
k=0

22kB2k

(2k)!
x2k ⇒ −(−1)kπ2k

2

k∑
j=0

B2j

(
2− 22j

)
(2j)!(2k − 2j)!

= −(−1)k(2π)2kB2k

2(2k)!
= ζ(2k) �

Theorem 6 lim
n→∞

1

2n2k
+

(−1)k(2π)2k

2

∫ 1

0

k∑
j=0

B2j

(
2− 22j

)
u2k−2j

(2j)!(2k − 2j)!
sin 2πn(1− u) cotπu du = ζ(2k)

Proof 6 : First we note that due to Theorem 4, the above limit reduces to:

−(−1)k(2π)2k

2

B2k(2− 22k)

(2k)!
+

1

2

k−1∑
j=0

B2j

(
2− 22j

)
(2j)!(2k − 2j)!


Now let’s prove that the above expression equals ζ(2k), using some of the previous results:

B2k(2− 22k)

(2k)!
+

1

2

k−1∑
j=0

B2j

(
2− 22j

)
(2j)!(2k − 2j)!

=
1

2

B2k(2− 22k)

(2k)!
+

1

2

k∑
j=0

B2j

(
2− 22j

)
(2j)!(2k − 2j)!

=
1

2

B2k(2− 22k)

(2k)!
+

1

2

B2k2
2k

(2k)!
=

B2k

(2k)!
⇒ −(−1)k(2π)2k

2

B2k

(2k)!
= ζ(2k) �

8.2 Limits of the Integrals on the H2k+1(n) Recursions

We can express each integral as a function of H2j+1(n) for all real n:

∫ 1

0

u2k+1 (1− cosπn(1− u)) tan
πu

2
du =

2(−1)k(2k + 1)!

π2k+1

 k∑
j=0

(−1)k−jπ2k−2j

(2k + 1− 2j)!
H2j+1(n)− 1

2n2k+1

k∑
j=0

(−1)j(πn)2j

(2j + 1)!


∫ 1

0

u2k+1 (1− cos 2πn(1− u)) cotπu du =
−2(−1)k(2k + 1)!

(2π)2k+1

 k∑
j=0

(−1)k−j(2π)2k−2j

(2k + 1− 2j)!
H2j+1(n)− 1

2n2k+1

k∑
j=0

(−1)j(2πn)2j

(2j + 1)!
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∫ 1

0

u2k+2 (1− cos 2πn(1− u)) cotπu du =
−2(−1)k(2k + 2)!

(2π)2k+1

 k∑
j=0

(−1)k−j(2π)2k−2j

(2k + 2− 2j)!
H2j+1(n)− 1

2n2k+1

k∑
j=0

(−1)j(2πn)2j

(2j + 2)!


From the above equations, we can infer that each one of the integrals tends to plus or minus

infinity as n increases (the reason is that each one contains H(n), which is unbounded).

One consequence of this fact is that the coefficients of p2k+1(u) in the formulae of H2k+1(n) need
to sum up to 0 for all k ≥ 1, in order to cancel out those infinities, the exception being H(n). This
statement is translated in the next theorem.

Theorem 7 p2k+1(1) =

k∑
j=0

B2j

(
2− 22j

)
(2j)!(2k + 1− 2j)!

= 0, ∀ integer k ≥ 1

Proof 7 In section (3.8), we’ve created a generating function for p2k+1(u), which allows us to deduce
the following equivalence (notice the second sum in the double-sum is p2k+1(u)):

∞∑
k=0

(−1)kx2k+1
k∑
j=0

B2j

(
2− 22j

)
u2k+1−2j

(2j)!(2k + 1− 2j)!
=
x sinxu

sinx

Now, if u = 1, we conclude that the above sum equals x, which implies the theorem. �

Similarly, the below also holds, though the proof is omitted:

k∑
i=0

i∑
j=0

B2jB2i−2j
(
2− 22j

) (
2− 22i−2j

)
22k+2−2i

(2j)!(2i− 2j)!(2k + 2− 2i)!
= 0 ∀ k ≥ 1

8.2.1 Limit of H2k+1(n)

The values of ζ(2k+1) are given by the first part of the integral, as explained by the next theorem:

Theorem 8 ζ(2k + 1) =
(−1)kπ2k+1

2

∫ 1

0

k∑
j=0

B2j

(
2− 22j

)
u2k+1−2j

(2j)!(2k + 1− 2j)!
tan

πu

2
du, ∀ integer k ≥ 1

Proof 8 To prove this result, we need to show that:

lim
n→∞

∫ 1

0

k∑
j=0

B2j

(
2− 22j

)
u2k+1−2j

(2j)!(2k + 1− 2j)!
cosπn(1− u) tan

πu

2
du = 0

Using the result from Theorem 2, section (6.2.1), we know that for large n we can write:∫ 1

0
u2k+1−2j cosπn(1− u) tan

πu

2
+ 2u cos 2πn(1− u) cotπu du ∼ 2 log(2)

π

But per Theorem 7:

2 log(2)

π

k∑
j=0

B2j

(
2− 22j

)
(2j)!(2k + 1− 2j)!

= 0 and

∫ 1

0

k∑
j=0

B2j

(
2− 22j

)
u

(2j)!(2k + 1− 2j)!
cos 2πn(1− u) cotπu du = 0
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which implies the theorem. �

There’s a slightly different integral representation for ζ(2k + 1), which stems from the formula
derived in section (3.9):

ζ(2k + 1) = −(−1)k(2π)2k+1

2

∫ 1

0

k∑
j=0

B2j

(
2− 22j

)
u2k+1−2j

(2j)!(2k + 1− 2j)!
cotπu du
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