Conference paper Open Access

MINGUS: Melodic Improvisation Neural Generator Using Seq2Seq

Vincenzo Madaghiele; Pasquale Lisena; Raphael Troncy


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <controlfield tag="005">20211103165920.0</controlfield>
  <controlfield tag="001">5625684</controlfield>
  <datafield tag="711" ind1=" " ind2=" ">
    <subfield code="d">November 7-12, 2021</subfield>
    <subfield code="g">ISMIR 2021</subfield>
    <subfield code="a">International Society for Music Information Retrieval Conference</subfield>
    <subfield code="c">Online</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Pasquale Lisena</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Raphael Troncy</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">662931</subfield>
    <subfield code="z">md5:9631a92ee4819cb657d925a358fb1c50</subfield>
    <subfield code="u">https://zenodo.org/record/5625684/files/000051.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="y">Conference website</subfield>
    <subfield code="u">https://ismir2021.ismir.net</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2021-11-07</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-ismir</subfield>
    <subfield code="o">oai:zenodo.org:5625684</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="a">Vincenzo Madaghiele</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">MINGUS: Melodic Improvisation Neural Generator Using Seq2Seq</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-ismir</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">Sequence to Sequence (Seq2Seq) approaches have shown good performances in automatic music generation. We introduce MINGUS, a Transformer-based Seq2Seq architecture for modelling and generating monophonic jazz melodic lines.
 MINGUS relies on two dedicated embedding models (respectively for pitch and duration) and exploits in prediction features such as chords (current and following), bass line, position inside the measure. 
 The obtained results are comparable with the state of the art of music generation with neural models, with particularly good performances on jazz music.</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.5625683</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="g">412-419</subfield>
    <subfield code="b">ISMIR</subfield>
    <subfield code="a">Online</subfield>
    <subfield code="t">Proceedings of the 22nd International Society for Music Information Retrieval Conference</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.5625684</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">conferencepaper</subfield>
  </datafield>
</record>
97
68
views
downloads
All versions This version
Views 9797
Downloads 6868
Data volume 45.1 MB45.1 MB
Unique views 9090
Unique downloads 5959

Share

Cite as