Conference paper Open Access

MINGUS: Melodic Improvisation Neural Generator Using Seq2Seq

Vincenzo Madaghiele; Pasquale Lisena; Raphael Troncy


Dublin Core Export

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
  <dc:creator>Vincenzo Madaghiele</dc:creator>
  <dc:creator>Pasquale Lisena</dc:creator>
  <dc:creator>Raphael Troncy</dc:creator>
  <dc:date>2021-11-07</dc:date>
  <dc:description>Sequence to Sequence (Seq2Seq) approaches have shown good performances in automatic music generation. We introduce MINGUS, a Transformer-based Seq2Seq architecture for modelling and generating monophonic jazz melodic lines.
 MINGUS relies on two dedicated embedding models (respectively for pitch and duration) and exploits in prediction features such as chords (current and following), bass line, position inside the measure. 
 The obtained results are comparable with the state of the art of music generation with neural models, with particularly good performances on jazz music.</dc:description>
  <dc:identifier>https://zenodo.org/record/5625684</dc:identifier>
  <dc:identifier>10.5281/zenodo.5625684</dc:identifier>
  <dc:identifier>oai:zenodo.org:5625684</dc:identifier>
  <dc:publisher>ISMIR</dc:publisher>
  <dc:relation>doi:10.5281/zenodo.5625683</dc:relation>
  <dc:relation>url:https://zenodo.org/communities/ismir</dc:relation>
  <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
  <dc:rights>https://creativecommons.org/licenses/by/4.0/legalcode</dc:rights>
  <dc:title>MINGUS: Melodic Improvisation Neural Generator Using Seq2Seq</dc:title>
  <dc:type>info:eu-repo/semantics/conferencePaper</dc:type>
  <dc:type>publication-conferencepaper</dc:type>
</oai_dc:dc>
97
68
views
downloads
All versions This version
Views 9797
Downloads 6868
Data volume 45.1 MB45.1 MB
Unique views 9090
Unique downloads 5959

Share

Cite as