UPDATE: Zenodo migration postponed to Oct 13 from 06:00-08:00 UTC. Read the announcement.

Conference paper Open Access

Automatic Recognition of Texture in Renaissance Music

Emilia Parada-Cabaleiro; Maximilian Schmitt; Anton Batliner; Bjorn W. Schuller; Markus Schedl


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.5624443</identifier>
  <creators>
    <creator>
      <creatorName>Emilia Parada-Cabaleiro</creatorName>
    </creator>
    <creator>
      <creatorName>Maximilian Schmitt</creatorName>
    </creator>
    <creator>
      <creatorName>Anton Batliner</creatorName>
    </creator>
    <creator>
      <creatorName>Bjorn W. Schuller</creatorName>
    </creator>
    <creator>
      <creatorName>Markus Schedl</creatorName>
    </creator>
  </creators>
  <titles>
    <title>Automatic Recognition of Texture in Renaissance Music</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2021</publicationYear>
  <dates>
    <date dateType="Issued">2021-11-07</date>
  </dates>
  <resourceType resourceTypeGeneral="ConferencePaper"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/5624443</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.5624442</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/ismir</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">Renaissance music constitutes a resource of immense richness for Western culture, as shown by its central role in digital humanities. Yet, despite the advance of computational musicology in analysing other Western repertoires, the use of computer-based methods to automatically retrieve relevant information from Renaissance music, e. g., identifying word-painting strategies such as madrigalisms, is still underdeveloped. To this end, we propose a score-based machine learning approach for the classification of texture in Italian madrigals of the 16th century. Our outcomes indicate that Low Level Descriptors, such as intervals, can successfully convey differences in High Level features, such as texture. Furthermore, our baseline results, particularly the ones from a Convolutional Neural Network, show that machine learning can be successfully used to automatically identify sections in madrigals associated with specific textures from symbolic sources.</description>
  </descriptions>
</resource>
79
63
views
downloads
All versions This version
Views 7979
Downloads 6363
Data volume 18.0 MB18.0 MB
Unique views 7373
Unique downloads 5959

Share

Cite as