Conference paper Open Access

Automatic Recognition of Texture in Renaissance Music

Emilia Parada-Cabaleiro; Maximilian Schmitt; Anton Batliner; Bjorn W. Schuller; Markus Schedl

Renaissance music constitutes a resource of immense richness for Western culture, as shown by its central role in digital humanities. Yet, despite the advance of computational musicology in analysing other Western repertoires, the use of computer-based methods to automatically retrieve relevant information from Renaissance music, e. g., identifying word-painting strategies such as madrigalisms, is still underdeveloped. To this end, we propose a score-based machine learning approach for the classification of texture in Italian madrigals of the 16th century. Our outcomes indicate that Low Level Descriptors, such as intervals, can successfully convey differences in High Level features, such as texture. Furthermore, our baseline results, particularly the ones from a Convolutional Neural Network, show that machine learning can be successfully used to automatically identify sections in madrigals associated with specific textures from symbolic sources.
Files (285.5 kB)
Name Size
285.5 kB Download
All versions This version
Views 5959
Downloads 4848
Data volume 13.7 MB13.7 MB
Unique views 5454
Unique downloads 4545


Cite as