Conference paper Open Access

Automatic Recognition of Texture in Renaissance Music

Emilia Parada-Cabaleiro; Maximilian Schmitt; Anton Batliner; Bjorn W. Schuller; Markus Schedl

Renaissance music constitutes a resource of immense richness for Western culture, as shown by its central role in digital humanities. Yet, despite the advance of computational musicology in analysing other Western repertoires, the use of computer-based methods to automatically retrieve relevant information from Renaissance music, e. g., identifying word-painting strategies such as madrigalisms, is still underdeveloped. To this end, we propose a score-based machine learning approach for the classification of texture in Italian madrigals of the 16th century. Our outcomes indicate that Low Level Descriptors, such as intervals, can successfully convey differences in High Level features, such as texture. Furthermore, our baseline results, particularly the ones from a Convolutional Neural Network, show that machine learning can be successfully used to automatically identify sections in madrigals associated with specific textures from symbolic sources.
Files (285.5 kB)
Name Size
000063.pdf
md5:1c2e2819adb46fa6aae068fbcaf2f291
285.5 kB Download
19
14
views
downloads
All versions This version
Views 1919
Downloads 1414
Data volume 4.0 MB4.0 MB
Unique views 1515
Unique downloads 1414

Share

Cite as