Published October 27, 2021 | Version v1
Software Open

C++ script derived from the original O'Hara-Rudy dynamic model including a Markov model for hERG gating used to compute several proarrhythmogenic risk predictors, particularly Qnet

  • 1. University of Bucharest

Description

// C++ script derived from the original O'Hara-Rudy dynamic model
// including a Markov model for hERG gating similar with that described in
// Li et al. 2017 https://doi.org/10.1161/CIRCEP.116.004628
// but with simplified pharmacodynamic component including only blocking/unblocking rates
// used to compute several proarrhythmogenic risk predictors, particularly Qnet
// as described in Dutta et al. 2017 https://doi.org/10.3389/fphys.2017.00616
// pharmacology data for a 12-compounds set (CiPA training set)
// and a supplementary 16-compounds set (CiPA validation set)
// and for chloroquine and hydroxychloroquine using experimental data from:
// Thomet U, Amuzescu B, Knott T, Mann SA, Mubagwa K, Radu BM (2021)
// Assessment of Proarrhythmogenic Risk for Chloroquine and Hydroxychloroquine Using the CiPA Concept
// European Journal of Pharmacology (in review)

// Copyright (c) 2011-2015 by Thomas O'Hara, Yoram Rudy,
//                            Washington University in St. Louis.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the names of the copyright holders nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
// TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
// PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
// USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
// ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
// DAMAGE.
//

// C++ Implementation of the O'Hara-Rudy dynamic (ORd) model for the
// undiseased human ventricular action potential and calcium transient
//
// The ORd model is described in the article "Simulation of the Undiseased
// Human Cardiac Ventricular Action Potential: Model Formulation and
// Experimental Validation"
// by Thomas O'Hara, Laszlo Virag, Andras Varro, and Yoram Rudy
//
// The article and supplemental materails are freely available in the
// Open Access jounal PLoS Computational Biology
// Link to Article:
// http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1002061
//
// Email: tom.ohara@gmail.com / rudy@wustl.edu
// Web: http://rudylab.wustl.edu
//

Files

readme.txt

Files (55.8 kB)

Name Size Download all
md5:3b64bc001050afc725e076937725d81d
52.5 kB Download
md5:ef661604edb267344b93145c2f3d67a8
3.3 kB Preview Download

Additional details

References

  • O'Hara, T., Virág, L., Varró, A., Rudy, Y., 2011. Simulation of the undiseased human cardiac ventricular action potential: model formulation and experimental validation. PLoS Comput Biol 7, e1002061. https://doi.org/10.1371/journal.pcbi.1002061
  • Li, Z., Dutta, S., Sheng, J., Tran, P.N., Wu, W., Chang, K., Mdluli, T., Strauss, D.G., Colatsky, T., 2017b. Improving the In Silico Assessment of Proarrhythmia Risk by Combining hERG (Human Ether-a-go-go-Related Gene) Channel-Drug Binding Kinetics and Multichannel Pharmacology. Circ Arrhythm Electrophysiol 10, e004628. https://doi.org/10.1161/CIRCEP.116.004628
  • Dutta, S., Chang, K.C., Beattie, K.A., Sheng, J., Tran, P.N., Wu, W.W., Wu, M., Strauss, D.G., Colatsky, T., Li, Z., 2017. Optimization of an In silico Cardiac Cell Model for Proarrhythmia Risk Assessment. Front Physiol 8, 616. https://doi.org/10.3389/fphys.2017.00616
  • Han, X., Samieegohar, M., Ridder, B.J., Wu, W.W., Randolph, A., Tran, P., Sheng, J., Stoelzle-Feix, S., Brinkwirth, N., Rotordam, M.G., Becker, N., Friis, S., Rapedius, M., Goetze, T.A., Strassmaier, T., Okeyo, G., Kramer, J., Kuryshev, Y., Wu, C., Strauss, D.G., Li, Z., 2020. A general procedure to select calibration drugs for lab-specific validation and calibration of proarrhythmia risk prediction models: An illustrative example using the CiPA model. J Pharmacol Toxicol Methods 105, 106890. https://doi.org/10.1016/j.vascn.2020.106890
  • Li, Z., Mirams, G.R., Yoshinaga, T., Ridder, B.J., Han, X., Chen, J.E., Stockbridge, N.L., Wisialowski, T.A., Damiano, B., Severi, S., Morissette, P., Kowey, P.R., Holbrook, M., Smith, G., Rasmusson, R.L., Liu, M., Song, Z., Qu, Z., Leishman, D.J., Steidl-Nichols, J., Rodriguez, B., Bueno-Orovio, A., Zhou, X., Passini, E., Edwards, A.G., Morotti, S., Ni, H., Grandi, E., Clancy, C.E., Vandenberg, J., Hill, A., Nakamura, M., Singer, T., Polonchuk, L., Greiter-Wilke, A., Wang, K., Nave, S., Fullerton, A., Sobie, E.A., Paci, M., Musuamba Tshinanu, F., Strauss, D.G., 2020. General Principles for the Validation of Proarrhythmia Risk Prediction Models: An Extension of the CiPA In Silico Strategy. Clin Pharmacol Ther 107, 102-111. https://doi.org/10.1002/cpt.1647