Poster Open Access

Using deep learning cloud classification in cloud feedback and climate sensitivity determination

Kuma, Peter; Bender, Frida


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <controlfield tag="005">20211028014845.0</controlfield>
  <controlfield tag="001">5605067</controlfield>
  <datafield tag="711" ind1=" " ind2=" ">
    <subfield code="d">25-29 October 2021</subfield>
    <subfield code="a">FORCeS Annual Meeting 2021</subfield>
    <subfield code="c">Stockholm University, Stockholm, Sweden</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Stockholm University, Stockholm, Sweden</subfield>
    <subfield code="0">(orcid)0000-0003-4867-4007</subfield>
    <subfield code="a">Bender, Frida</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">5341430</subfield>
    <subfield code="z">md5:ecbcb6c7d5d454b0a4e7dd193d821cc6</subfield>
    <subfield code="u">https://zenodo.org/record/5605067/files/Kuma and Bender (2021), Using deep learning cloud classiļ¬cation in cloud feedback and climate sensitivity determination.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="y">Conference website</subfield>
    <subfield code="u">https://forces-project.eu</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2021-10-27</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o">oai:zenodo.org:5605067</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Stockholm University, Stockholm, Sweden</subfield>
    <subfield code="0">(orcid)0000-0002-0910-8646</subfield>
    <subfield code="a">Kuma, Peter</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Using deep learning cloud classification in cloud feedback and climate sensitivity determination</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;We develop a deep convolutional neural network for determination of cloud types in low-resolution daily mean top-of-atmosphere shortwave and longwave radiation images, corresponding to the classical cloud types recorded by human observers in the Global Telecommunication System. We train this network on the CERES top of atmosphere radiation dataset, and apply this network on the CMIP6 abrupt-4xCO2 model output to determine long-term change in cloud type occurrence in these models with increasing CO2 concentration. We contrast these results with corresponding cloud type change in historical satellite measurements. The proposed neural network approach is broadly applicable for model, reanalysis and satellite imagery evaluation because it does not require high resolution and corresponds to the cloud types commonly recorded at weather stations worldwide.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.5605066</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.5605067</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">poster</subfield>
  </datafield>
</record>
34
18
views
downloads
All versions This version
Views 3434
Downloads 1818
Data volume 96.1 MB96.1 MB
Unique views 3232
Unique downloads 1717

Share

Cite as