Journal article Open Access

IRNSS Orbit and Clock Bias Estimation using NavIC Ground Receiver Data: Extended Kalman Filter

Varsha H. S.; Shreyanka B. Chougule; N. V. Vighnesam; Sudha K. L.


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://zenodo.org/record/5602693</identifier>
  <creators>
    <creator>
      <creatorName>Varsha H. S.</creatorName>
      <affiliation>Dayananda Sagar College of Engineering, Bengaluru  560078 (Karnataka) India.</affiliation>
    </creator>
    <creator>
      <creatorName>Shreyanka B. Chougule</creatorName>
      <affiliation>Dayananda Sagar College of Engineering, Bengaluru  560078 (Karnataka) India.</affiliation>
    </creator>
    <creator>
      <creatorName>N. V. Vighnesam</creatorName>
      <affiliation>Dayananda Sagar College of Engineering, Bengaluru  560078 (Karnataka) India.</affiliation>
    </creator>
    <creator>
      <creatorName>Sudha K. L.</creatorName>
      <affiliation>Dayananda Sagar College of Engineering, Bengaluru  560078 (Karnataka) India.</affiliation>
    </creator>
  </creators>
  <titles>
    <title>IRNSS Orbit and Clock Bias Estimation using  NavIC Ground Receiver Data: Extended Kalman  Filter</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2019</publicationYear>
  <subjects>
    <subject>Clock bias, Estimation algorithms, Extended Kalman Filter, IRNSS, NavIC receiver, Orbit Determination, Satellite Position Estimation</subject>
    <subject subjectScheme="issn">2249-8958</subject>
    <subject subjectScheme="handle">B3670129219/2019©BEIESP</subject>
  </subjects>
  <contributors>
    <contributor contributorType="Sponsor">
      <contributorName>Blue Eyes Intelligence Engineering  &amp; Sciences Publication(BEIESP)</contributorName>
      <affiliation>Publisher</affiliation>
    </contributor>
  </contributors>
  <dates>
    <date dateType="Issued">2019-12-30</date>
  </dates>
  <language>en</language>
  <resourceType resourceTypeGeneral="JournalArticle"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/5602693</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="ISSN" relationType="IsCitedBy" resourceTypeGeneral="JournalArticle">2249-8958</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.35940/ijeat.B3670.129219</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;The aim of this work is to precisely estimate the IRNSS satellite&amp;rsquo;s orbit and clock errors using NavIC receiver data. Orbit determination is required to precisely calculate the user/receiver position on the Earth. In this study, Bengaluru, Surat, Kolkata, and Hyderabad&amp;rsquo;s NavIC ground receivers&amp;rsquo; data is considered for orbit estimation. The pseudo-range measurements received by the ground receivers have multiple errors added due to ionospheric delay, tropospheric delay, multipath delays, satellite clock errors, and some unmodeled effects. But, the major factor accounting for errors is the satellite clock error. Hence, along with position and velocity of the satellite, even the clock correction is estimated using Extended Kalman Filter (EKF). EKF is a sequential estimation algorithm which estimates satellite position, velocity and clock error at each time instant. In this paper, results of all seven IRNSS satellite&amp;rsquo;s orbit determination are discussed.&lt;/p&gt;</description>
  </descriptions>
</resource>
15
16
views
downloads
Views 15
Downloads 16
Data volume 10.7 MB
Unique views 14
Unique downloads 16

Share

Cite as