Journal article Open Access

Denoising of EEG Signal using Matlab and SIMULINK Techniques and Estimation of Power Spectral Density of EEG Signal using SIMULINK AR Models

B.Krishna Kumar

MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="">
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">WT, DWT, Ocular Artifacts, power spectral density</subfield>
  <controlfield tag="005">20211027134850.0</controlfield>
  <controlfield tag="001">5602238</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Publisher</subfield>
    <subfield code="4">spn</subfield>
    <subfield code="a">Blue Eyes Intelligence Engineering  &amp; Sciences Publication(BEIESP)</subfield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">748745</subfield>
    <subfield code="z">md5:6c4697a2ad5c7e1d7d4796f60f613d2a</subfield>
    <subfield code="u"></subfield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2019-12-30</subfield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o"></subfield>
  <datafield tag="909" ind1="C" ind2="4">
    <subfield code="c">418-422</subfield>
    <subfield code="n">2</subfield>
    <subfield code="p">International Journal of Engineering and Advanced Technology (IJEAT)</subfield>
    <subfield code="v">9</subfield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Professor, Electronics and Communication Engineering, Methodist College of Engineering and Technology, Hyderabad,  India.</subfield>
    <subfield code="a">B.Krishna Kumar</subfield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Denoising of EEG Signal using Matlab and  SIMULINK Techniques and Estimation of  Power Spectral Density of EEG Signal using  SIMULINK AR Models</subfield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u"></subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2"></subfield>
  <datafield tag="650" ind1="1" ind2=" ">
    <subfield code="a">ISSN</subfield>
    <subfield code="0">(issn)2249-8958</subfield>
  <datafield tag="650" ind1="1" ind2=" ">
    <subfield code="a">Retrieval Number</subfield>
    <subfield code="0">(handle)F8956088619/2019©BEIESP</subfield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;The Electroencephalogram (EEG) is the standard technique for investigating the brain&amp;rsquo;s electrical activity in different psychological and pathological states. Analysis of Electroencephalogram (EEG) signal is a challenging task by reason of the presence of different artifacts such as Ocular Artifacts (OA) and Electromyogram. Normally EEG signals falls in the frequency range of DC to 60 Hz and amplitude of 1-5 &amp;micro;v. Ocular artifacts do have the similar statistical properties of EEG signals, often interfere with EEG signal, thereby making the analysis of EEG signals more complex. In this research paper, removal of artifacts was done using wavelets (matlab coding) as well as using SIMULINK DWT and IDWT blocks and estimated the SNR. In the next stage the output of IDWT block was taken as input to Burg model and Yule walker model to estimate the power spectral density of EEG signal by setting the various parameters of the blocks. The implementation of denoising of EEG signal using SIMULINK DWT and IDWT blocks and estimation of power spectral density of denoised EEG signal using Burg model and Yule walker model was explained in detail in the paper under the methodology heading. In this research paper, the collected EEG signal is normalized and later linearly mixed with the normalized EOG signal resulting in a noisy EEG signal. This noisy EEG signal is decomposed to 4 levels by using different wavelets. This decomposition of EEG signals yields approximate and detail coefficients. Later different thresholding techniques were applied to detail coefficients and estimated the Signal to Noise Ratio of it and estimated the power spectral density of denoised EEG signal obtained from dB4 wavelet as it is providing better SNR than other wavelets mentioned in the results.&lt;/p&gt;</subfield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">issn</subfield>
    <subfield code="i">isCitedBy</subfield>
    <subfield code="a">2249-8958</subfield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.35940/ijeat.F8956.129219</subfield>
    <subfield code="2">doi</subfield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
Views 22
Downloads 20
Data volume 15.0 MB
Unique views 22
Unique downloads 20


Cite as