
Chapter 3

Formal background
Frank Richter
Goethe Universität Frankfurt

This chapter provides a very condensed introduction to a formalism for Pollard &
Sag (1994) and explains its fundamental concepts. It pays special attention to the
model-theoretic meaning of HPSG grammars. In addition, it points out some links
to other, related formalisms, such as feature logics of partial information, and to
related terminology in the context of grammar implementation platforms.

1 Introduction

The two HPSG books by Pollard & Sag (1987; 1994) do not present grammar for-
malisms with the intention to provide precise definitions. Instead they refer to
various inspirations in the logics of typed feature structures or in predicate logic,
informally characterize the intended formalisms, and explain them as they are
used in concrete grammars of English. Pollard & Sag (1994) further clarify their
intentions in an appendix which lists most (but not all) of the components of their
grammar of English explicitly, and summarizes most of their core assumptions.
With this strategy, both books leave room for interpretation.

There are a number of challenges with reviewing the formal background of
HPSG. Some of them have to do with the long publication history of relevant
papers and books, some with the considerable influence of grammar implemen-
tation platforms, which have their own formalisms and shape the way in which
linguists think and talk about grammars with their platform-specific terminol-
ogy and notational conventions. Salient examples include convenient notations
for phrase structure rules, the treatment of lexical representations or the lexi-
con, mechanisms for lexical rules, and notations for default values, among many
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other devices. Many of these notations are well-known in the HPSG commu-
nity; they are convenient, compact and arguably even necessary to write read-
able grammars. At the same time, they are a meta-notation in the sense that they
do not (directly) belong to the syntax of the assumed feature logics. However,
even if they are outside a declarative, logical formalism for HPSG, there is usu-
ally a way to interpret them in HPSG-compatible formalisms, but the necessary
re-interpretation can deviate to a larger or lesser degree from what their users
have in mind when they write their grammars. For example, a phrase structure
rule in the sense of a context-free or context-sensitive rewrite system is not the
same as an ID Schema written in a feature logic, which might matter in some
cases but not in others. To name one difference, an ID Schema may easily leave
the number of a phrase’s daughters unspecified (and thus potentially infinite).
The differences may be sometimes subtle and sometimes significant, but they
entail that the meaning of the notations seen through the lens of logic is not
what their users might assume either based on their meaning in other contexts
or on what is gleaned from the behavior of a given implementation platform
for parsing or generation which employs that kind of syntax. Similarly, termi-
nology that belongs to the computational environment of implementations is
often transferred to grammar theory, and again, when checking the technical
specifics, a re-interpretation in terms of a feature-logical HPSG formalism can
sometimes be trivial and sometimes nearly impossible, and different available
re-interpretation choices lead to significantly different results.

Reviewing HPSG’s formal background, it is not only the multi-purpose charac-
ter and flexibility of the ubiquitous informal attribute-value matrix (AVM) nota-
tion and its practical notational enhancements (for lexical rules, decorated sort hi-
erarchies, phrase structure trees, etc.) that one needs to be aware of, but also early
changes in foundational assumptions and terminology. When first presented in
a book in 1987, HPSG was conceived of as a unification-based grammar theory,
a name, the authors explain, which “arises from the algebra that governs partial
information structures” (Pollard & Sag 1987: 7). This algebra was populated by
partial feature structures with unification as a fundamental algebraic operation.
In the framework envisioned seven years later in Pollard & Sag (1994), that al-
gebra did not exist anymore, feature structures were no longer partial but total
objects in models of a logical theory, and unification was no longer defined in the
new setting (as the relevant algebra was gone). However, most of the notation
and considerable portions of the terminology of 1987 remain with us to this day,
such as the types of feature structures (replaced by sorts in 1994, when the term
type was used for a different concept, to be discussed below), the pieces of in-
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formation (for 1987-style feature structures) or even the word unification, which
took on a casual life of its own without the original algebra in which it had been
defined. Occasionally these words still have a precise technical interpretation
in the language of grammar implementation environments or in their run-time
system, which may reinforce their use in the community despite their lack of
meaning in the standard formalism of HPSG. Implementation platforms also of-
ten add their own technical and notational devices, thereby inviting linguists to
import them as useful tools into their theoretical grammar writing.

This handbook article cannot disentangle the history of and relationships be-
tween the various formalisms leading to an explication of the 1994 version of
HPSG, nor of those that existed and still exist in parallel. It sets out to clarify the
terminology and structure of a formalism for Pollard & Sag (1994) and presents
a canonical formalism of the final version of HPSG in Pollard & Sag (1994). Only
occasionally will it point out some of the differences to its 1987 precursor where
the older terminology is still present in current HPSG papers and may be confus-
ing to an audience unaware of the different usages of terms. Similarly, it does
not cover the HPSG variant Sign-Based Construction Grammar (SBCG; Sag 2012;
Müller 2021: Section 1.3.2, Chapter 32 of this volume).

The main sources of the present summary are the model theories for HPSG by
King (1999) and Pollard (1999), and their synoptic reconstruction on the basis of
a comprehensive logical language for HPSG, Relational Speciate Re-entrant Lan-
guage (RSRL) by Richter (2004), including the critique and extensions sketched
in Richter (2007). Section 2 gives a largely non-technical introductory overview
which should provide sufficient background to follow all linguistic chapters of
the present handbook. The subsequent sections (3–6) introduce RSRL and are for
readers keen on obtaining a deeper understanding or looking for clarification of
what might remain vague and imprecise in an initial broad overview. Those
sections might be more challenging for the casual reader, but in return offer a
fairly self-contained and comprehensive summary, omitting only the mathemat-
ical groundwork and definitions needed to spell out alternative model-theories,
as this goes beyond what can reasonably be compressed to handbook format.

2 Essentials: An informal overview

This section presents an informal summary of the essentials of an HPSG formal-
ism in the sense of Pollard & Sag (1994) as it emerged from their original outline
and its subsequent elaboration. From here on, the term “HPSG formalism” al-
ways refers to this tradition, unless explicitly stated otherwise. All later sections
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in this chapter will flesh out the basic ideas introduced here with a precise tech-
nical treatment of the relevant notions. Readers who are already familiar with
feature logics and are specifically interested in technical details may want to skip
ahead to Section 3.

At the heart of HPSG is a fundamental distinction between descriptions and
described objects: a grammar avails itself of descriptions with the purpose of
describing linguistic objects. Pollard & Sag (1994: 17–18, 396) commit to the onto-
logical assumption that linguistic objects only exist as complete objects. Partial
linguistic objects do not exist. Descriptions of linguistic objects, however, are
typically partial, i.e. they do not mention many, or even most, properties of the
objects in their denotation. They are underspecified. A word can be described as
being nominal and plural, leaving all its other properties (gender, case, number
and category of its arguments, etc.) unspecified. But any concrete word being so
described will have all other properties that a plural noun can have, with none of
them missing. A single underspecified description can therefore describe many
distinct linguistic objects. Grammatical descriptions often describe an infinity of
objects. Again considering plural nouns, English can be thought of as having a
very large number or an infinity of them due to morphological processes such as
compounding, depending on the choice of morphological analysis.

Descriptions are couched in a (language of a) feature logic rather than in En-
glish for precision. Linguistic objects as the subject of linguistic study are sharply
distinguished from their logical descriptions and are entities in the denotation of
the grammatical descriptions. The feature logic of HPSG can be seen as a partic-
ularly expressive variant of description logics. With this architecture, HPSG is a
model-theoretic grammar framework as opposed to generative-enumerative gram-
mar frameworks, which have rewrite systems that generate expressions from
some start symbol(s) (Pullum & Scholz 2001).

A small digression might be in order to prevent confusion arising from the co-
existence of different versions of feature logics. Varieties of HPSG more closely
related to the tradition of Pollard & Sag (1987) do not make the same distinc-
tion between descriptions and described objects. Instead they employ a notion
of feature structures as entities carrying partial information. These partial feature
structures are, or correspond to, logical expressions in a certain normal form and
are ordered in an algebra of partial information according to the amount of in-
formation they carry. In informal notation, they are written as AVMs just like
the descriptions of the formalism we are presently concerned with, and this nota-
tional similarity contributes to obscuring substantial differences. When two par-
tial feature structures carry compatible information, they are said to be unifiable.
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Their unification returns a unique third feature structure in the given algebra
that carries the more specific information that is obtained when combining the
previous two pieces of information (supposing they were not the same to begin
with). These ideas and the properties of algebras employed by feature logics of
partial information are still essential for all current HPSG implementation plat-
forms (see Bender & Emerson 2021, Chapter 25 of this volume), which is presum-
ably one of the reasons why the terminology of unification and unification-based
grammars is still popular in the HPSG community. Returning to Pollard & Sag
(1994), in a certain informal and casual sense, combining two non-contradictory
descriptions into one single bigger description by logical conjunction could be
called – and often is called – their unification. However, since the logical descrip-
tions of HPSG in the tradition of Pollard & Sag (1994) can no longer be arranged
in an appropriate algebra, there is no technical interpretation of the term in this
context.1

HPSG employs partial descriptions in all areas of grammar, comprising at least
phonology (Höhle 1999, but also Bird & Klein 1994 and Walther 1999), morphol-
ogy (Crysmann 2021, Chapter 21 of this volume), syntax, semantics (Koenig &
Richter 2021, Chapter 22 of this volume) and pragmatics (De Kuthy 2021, Chap-
ter 23 of this volume; Lücking, Ginzburg & Cooper 2021, Chapter 26 of this vol-
ume). The descriptions are normally notated as AVMs and contain sort symbols
(by convention in italics with lower case letters) and attribute symbols (in small
caps). These are augmented by the standard logical connectives (conjunction, dis-
junction, negation and implication) and relation symbols. So-called tags, boxed
numbers, function as variables. (1) shows a typical example in which word, noun
and plural are sorts and SYNSEM, LOCAL, CATEGORY, etc. are attributes.2 The AVM
is a description of plural nouns.

(1)

word

SYNSEM|LOCAL
[
CATEGORY|HEAD noun
CONTENT|INDEX|NUMBER plural

]
A description such as (1) presupposes a declaration of the admissible nonlog-

ical symbols: as in any formal logical theory, the vocabulary of the formal lan-
guage in which the logical theory is written must be explicitly introduced as the
alphabet of the language, together with a set of logical symbols. This means

1This state of affairs is also responsible for the fact that implementation platforms often provide
only a restricted syntax of descriptions and may also supply additional syntactic constructs
which extend their logic of partial information toward the expressiveness of a feature logic
with classical interpretation of negation and relational expressions.

2Tags, relations and logical connectives in descriptions will be illustrated later, in (3).
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that the sorts, attributes and relation symbols must be listed. HPSG goes beyond
merely stating the nonlogical vocabulary as sets of symbols by imposing addi-
tional structure on the set of sorts and on the relationship between sorts and
attributes. This additional structure is known as the sort hierarchy and the fea-
ture (appropriateness) declarations.

The sort hierarchy and the feature declarations essentially provide the space of
possible structures of the linguistic universe that an HPSG grammar talks about
with its grammar principles. Metaphorically speaking, they generate a space of
possible structures which is then constrained to the actual, well-formed struc-
tures which a linguist deems the grammatical structures of a language. The
interaction between sort hierarchy and feature declarations is regulated by as-
sumptions about feature inheritance and feature value inheritance. This can best
be explained with a small example, using the tiny (and slightly modified) frag-
ment from the sort hierarchy and feature appropriateness of Pollard & Sag (1994)
shown in Figure 1.

object[
substantive
PRD boolean

]

verb
VFORM vform
PRD plus


[
noun
CASE case

]
case vform boolean

plus minus

Figure 1: Example of sort hierarchy with feature declarations

According to Figure 1, a top sort object is the highest sort with immediate sub-
sorts substantive, case, vform and boolean. The two sorts substantive and boolean
have their own immediate subsorts: verb and noun, and plus and minus, respec-
tively. All are subsorts of object. The six sorts verb, noun, case, vform, plus and
minus are maximally specific in this hierarchy, because they do not have proper
subsorts. Such sorts are called species. The four sorts case, vform, plus and minus
are also called atomic, because they are species and they do not have attributes
appropriate to them.

Figure 1 contains nontrivial feature declarations for the sorts substantive, verb
and noun, and it also illustrates the idea behind feature inheritance. First of all,
verb and noun have attributes which are only appropriate to them but to no other
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sort: VFORM is only appropriate to verb, and CASE is only appropriate to noun.
But there is one more attribute appropriate to both due to feature inheritance:
the attribute PRD is declared appropriate to substantive, and appropriateness dec-
larations are inherited by subsorts, so PRD is also appropriate to verb and noun.
The sort noun inherits the declaration unchanged from substantive.

Finally, we have to consider attribute values and their inheritance mechanism.
Whereas attributes are called appropriate to a sort, I call a sort appropriate for
an attribute at a given sort when talking about attribute values. For example,
the non-maximal sort boolean is declared appropriate for the attribute PRD at
substantive. This value declaration is also inherited by the subsorts, with a slight
twist to it: at any subsort, the value for an attribute can become more specific
(but not less specific) than at its supersort(s), and this is what happens here at
the subsort verb of substantive. At verb the value of PRD must be one particular
subsort of boolean, namely plus.3

A further crucial aspect of the sort hierarchy and the feature declarations is
their significance for the meaning of grammars. Structures in the denotation of a
grammar must fulfill all their combined restrictions plus the constraints imposed
by all grammar principles. Every denoted object must be of a maximally specific
sort, i.e. Figure 1 allows only objects of the six species in the hierarchy. In addition,
all attributes declared appropriate for a species (possibly by inheritance) must
be present on objects of that species, with the values of course also obeying
the feature declarations and being maximally specific. For example, an object of
sort noun has CASE and PRD properties. The object that is the CASE value must
be of sort case (because case is a species in the present example, unlike in real
grammars where case has subsorts), and the sort of the PRD value must be either
plus or minus, one of the two species which are maximally specific subsorts of
boolean. With these restrictions, specifications like in Figure 1 determine the
ontology of possible structures in the denotation of a grammar. The possible
structures are further narrowed down by the grammar principles, leaving the
well-formed structures as the predictions of a grammar.

This is a good opportunity to reconsider underspecified descriptions. With the
sort hierarchy and feature declarations of Figure 1, there are a number of ways
to underspecify the description of structures of sort noun. All following AVMs
describe the same structures but differ in their degree of explicitness:

3The plus value for PRD at verbs is introduced here to create a useful example; it is not usually
found in grammars.
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(2) a.

noun
CASE case
PRD plus ∨ minus


b.

[
noun

]
c.

[
noun
CASE object

]
d.

[
object
CASE object

]
e.


noun
CASE case
PRD plus

 ∨

noun
CASE case
PRD minus


All AVMs in (2) denote the same two configurations as the fully specific AVM
description in (2a): two noun structures with the CASE property case and the PRD
property plus or the PRD value minus. But a description of these structures can
be underspecified in many different ways. For noun structures in general (2b),
the two just described are the only two structural choices, as can be verified by
inspecting Figure 1. The description could mention in addition to what (2b) says
that the structures have a CASE property, leaving its value underspecified (2c),
but that does not make a difference with respect to the shape of the structures
satisfying the description. Moreover, the only objects with CASE (2d) are nouns,
but since that leaves exactly the two possible PRD values plus and minus, (2d)
is yet another way to underspecify the two structures which (2a) describes ex-
haustively. Omitting the sort symbol object in the upper left-hand corner of (2d)
would in fact be one more way to describe all nouns to the exclusion of every-
thing else, because saying that something is an object does not restrict the range
of choices. Finally, the disjunction embedded in the AVM in (2a) can be lifted to
the top level of the description, yielding (2e).

Grammar principles are descriptions which every structure is supposed to
obey, together with all its substructures. The Head Feature Principle, shown
in (3a), is a frequent example. Every phrase whose syntax is a headed phrase
(headed-phrase) is such that its HEAD value equals the HEAD value of its head
daughter, indicated by the repeated occurrence of tag 1 as the value of the two
HEAD features. Every structure which is described by the AVM to the left of the
implication symbol (in this case simply a sort, but see (3d)) must also fulfill the
requirements in the AVM to its right. If something is not a headed-phrase, it is
not restricted by the Head Feature Principle because it is not described by the an-
tecedent of the principle. At the same time, a structure which is not described by
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headed-phrase still satisfies the Head Feature Principle as an implicational state-
ment. For example, the SYNSEM value of each phrase is usually assumed to be an
object of sort synsem, i.e. it is not a phrase of sort headed-phrase. As a synsem
object, it is not described by the antecedent of (3a), thereby still fulfilling the
principle. In classical logic, 𝐴 → 𝐵 is equivalent to ¬𝐴 ∨ 𝐵, so something that
is not an 𝐴 satisfies ¬𝐴 ∨ 𝐵. This is highly relevant for the ultimate idea that
a structure is only licensed by an HPSG grammar when it is well-formed in all
its components with respect to all the grammar principles: every component of
each structure that is described by the antecedent of a grammar principle also
obeys what the consequent of the principle requires, or a given component of
the structure is licensed by not being described by the antecedent of the given
principle.

The tag 1 signals the identity of the value found at the end of the two distinct
attribute paths leading to its occurrences. This state of affairs is often referred
to as token identity. In the Head Feature Principle, the tag notation could be
an informal notation for a path equation, or it could mean that 1 plays the role
of a variable. The description language of Sections 3–4 offers both options for
rendering such occurrences of tags in the syntax of RSRL.

(3) a. headed-phrase ⇒
[
SYNSEM|LOCAL|CATEGORY|HEAD 1
HEAD-DTR|SYNSEM|LOCAL|CATEGORY|HEAD 1

]
b. word ⇒ (LE1 ∨ LE2 ∨ . . . ∨ LE𝑛)

c. sign ⇒

SYNSEM|LOC

[
QSTORE 1
POOL 2

]
RETRIEVED 3


∧ set-of-elements ( 3 , 4 ) ∧ 4 ⊆ 2 ∧ 1 = 2 − 4

d.
[
RETRIEVED nelist

]
⇒

[
SYNSEM|LOCAL|CONTENT psoa

]
The licensing of words by the grammar can also be understood as a conse-

quence of a grammar principle with the shape of an implication. (3b) is known
as the Word Principle (Höhle 2019: 500). LE1 to LE𝑛 in (3b) are the lexical entries
of the grammar, descriptions of words. If an object is a word, it must be described
by (at least) one of the disjuncts in the consequent of the Word Principle.

The semantic principle in (3c), taken from Pollard & Yoo (1998: 420),4 illus-
trates one more syntactic construct of HPSG’s description language, relations.
The consequent of the principle consists of an AVM description conjoined with

4This principle is also discussed in the semantics chapter, Koenig & Richter (2021: 1008), Chap-
ter 22 of this volume.
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three relational expressions. Relations in HPSG often occur in connection with
lists and sets, and so do the relations here: the binary relation set-of-elements
relates the RETRIEVED value (a list) to a set 4 containing the elements on list 3

such that the set value 2 of POOL is a superset of 4 (using the subset relation),
and the set value 1 of QSTORE contains those elements of 2 which are not on
the RETRIEVED list (using set difference). In other words, each element of POOL
is either in QSTORE or a list element on RETRIEVED, and nothing else is in QSTORE
or on the RETRIEVED list.5

The grammar principle (3d), which is also from Pollard & Yoo (1998: 421), is a
case of a principle with a complex description in the antecedent, unlike (3a)–(3c),
in which the antecedent consists of a sort symbol. Any kind of description may
serve as antecedent of a grammar principle.

An HPSG grammar is a signature consisting of a sort hierarchy, feature ap-
propriateness declarations and relation symbols, together with a set of grammar
principles. The meaning of the grammar is given by a class of structures (lin-
guistic objects) which obey the structural restrictions of the signature and are
completely well-formed with respect to the grammar principles. The nature of
the linguistic objects and how the relevant models of an HPSG grammar should
be conceived of has been subject to intense discussion. Pollard & Sag (1994: 8–9)
think of them as types and want to construct them as a set of totally well-typed
and sort-resolved abstract feature structures. Each such type is supposed to cor-
respond to the set of token occurrences of the same utterance. For example, in
this view, the English utterance Breakfast is ready, which may occur as a concrete
utterance token at different places and at different times, always belongs to the
unique type Breakfast is ready, rendered as an abstract feature structure licensed
by an HPSG grammar of English.

All HPSG model theories after Pollard & Sag (1994) give up the idea of pos-
tulating types as objects in the intended grammar model and do not construct
models which are populated with feature structures.6 King (1999) suggests ex-

5One additional interesting property of this principle concerns the set designated by tag 4 .
Structures described by the consequent of the principle do not necessarily contain an attribute
with the set value 4 . However, the list 3 and the sets 1 and 2 are all attribute values which are
restricted in (3c) by reference to set 4 . Such constellations motivate the introduction of chains
in the description language. Chains model lists (or sets) of objects that are not themselves
attribute values, but whose members are (see Section 3 for the syntax and Section 4 for the
semantics of chains). 4 is best described as a chain.

6Pollard (1999: 294) still uses the term feature structure, but it is applied to a special kind of
interpretation in the sense of Definition 7. See the more detailed characterization of these
structures in Section 6 below.
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haustive models, collections of possible language tokens. Whereas two types are
always distinct, linguistic tokens in exhaustive models can be isomorphic when
they are different token occurrences of the same utterance. Pollard (1999) rejects
the idea that models contain possible tokens and essentially uses a variant of
King’s exhaustive models for constructing sets of unique mathematical idealiza-
tions of linguistic utterances: any well-formed utterance finds its structurally iso-
morphic unique counterpart in this model, called the strong generative capacity
of the grammar. The relationship between the elements of the strong generative
capacity and empirical linguistic events is much tighter than it is for Pollard and
Sag’s object types: for the former, it is a relationship of structural isomorphism,
for the latter it is only a conventional notion of correspondence. Moreover, Pol-
lard’s models avoid an ontological commitment to the reality of types. Richter
(2007) points out shortcomings with the postulated one-to-one correspondence
between linguistic types (Pollard & Sag 1994) or mathematical idealizations (Pol-
lard 1999) and the groups of linguistically indistinguishable utterances they are
supposed to represent (e.g. the group of realizations of Breakfast is ready). The
failure of achieving the intended one-to-one correspondence is due to techni-
cal properties of the structure of the respective models and to imprecisions of
actual HPSG grammar specifications, and the two factors are partially indepen-
dent. Richter (2007) suggests schematic amendments to grammars (by a small set
of axioms and an extended signature), leading to normal form grammars whose
minimal exhaustive models exhibit the intended one-to-one correspondence be-
tween structural configurations in the model and (groups of linguistically indis-
tinguishable) empirically observable utterance events. Despite being a certain
kind of exhaustive model, minimal exhaustive models are not token models and
do not suffer from the problematic concept of potential token models which is
characteristic of King’s approach.

HPSG as a model-theoretic grammar framework provides linguists with an ex-
pressive class of logical description languages. Their semantics makes it possible
to investigate closely the predictions of a given set of grammar principles and
the internal and mutual consistency of different modules of grammar. At a more
foundational level, HPSG is exceptional with its alternative characterizations of
the meaning of grammars based on one and the same set of core definitions of the
syntax and semantics of its descriptive devices. This common core in the service
of philosophically different approaches to the scientific description of human lan-
guages makes their respective advantages and disadvantages comparable within
one single framework, and it renders the discussion of very abstract concepts
from the philosophy of science unusually concrete. Alternative approaches to
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grammatical meaning based on different views of the nature of scientific descrip-
tion of an empirical domain can be investigated and compared with a degree of
detail that is hardly achieved elsewhere in linguistics.

The structure of the remainder of this chapter is as follows: Section 3 turns to
the syntax of RSRL, defines signatures with sort hierarchies and feature appro-
priateness for the non-logical vocabulary, and introduces terms and formulæ as
expressions. A subclass of formulæ is called descriptions and corresponds to the
informal AVMs augmented with logical connectives and relational expressions
which we saw above in (1)–(3). Section 4 furnishes the syntactic expressions with
a semantics similar to what is familiar from classical logic, except that formulæ
and descriptions denote sets of objects rather than truth values. Section 5 turns
to the meaning of grammars, taking King’s exhaustive models as a concrete ex-
ample of the four explications outlined above, since it is technically the easiest to
define. The final section (Section 6) outlines how the other three approaches to
the meaning of HPSG grammars differ from King’s possible token models with-
out fully defining all constructs they involve.

The function of Sections 3–6 is thus to spell out in more depth what the present
section summarized in much broader strokes. Readers who do not wish to pur-
sue HPSG’s formal foundations further can stop here without missing anything
fundamentally new.

3 Signatures and descriptions

As logical theories of entities in a domain of objects, HPSG grammars consist of
two main components. First, a logical signature, which provides the symbols for
describing the domain of interest, in this case a natural language. And second, an
exact delineation of all and only the legitimate entities in the denotation of the
grammar, written as a collection of statements about their configuration. These
statements are descriptions within a logical language and are composed from
logical constants, variables, quantifiers, brackets and the symbols provided by
the signature. They are variously known to linguists as principles of grammar,
constraints, or rules. In the following, I will use the term principles to designate
these statements. Linguists often use abbreviatory conventions for conceptually
distinguished groups of principles, such as grammar rules, lexical entries, or lex-
ical rules. From a logical perspective, then, a grammar is a pair consisting of a
signature and a collection of principles. The appendix of Pollard & Sag (1994)
provides an early example in HPSG of this conception.
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Signatures in HPSG go beyond supplying non-logical symbols for descriptions,
they impose additional restrictions on the organization of the non-logical sym-
bols. These restrictions ultimately have an effect on how the domain of described
objects is structured. Let us first investigate the two most prominent sets of non-
logical symbols: sorts and attributes. The set of sort symbols is arranged in a sort
hierarchy, and that sort hierarchy is in turn connected to the set of attribute sym-
bols (also known as features). The sort hierarchy is a partial order,7 and attributes
are declared appropriate to sorts in the sort hierarchy. This appropriateness dec-
laration must not be entirely random: if an attribute is declared appropriate to
some sort, it must also be declared appropriate to all its subsorts. This require-
ment is known as feature inheritance.8 Moreover, for each sort 𝜎 and attribute
𝜙 such that 𝜙 is appropriate to 𝜎 , some other sort 𝜎 ′ is appropriate for 𝜙 at 𝜎 .
In other words, a certain attribute value (𝜎 ′) is declared appropriate for 𝜙 at 𝜎 .
These attribute values must not be completely random either: for any subsort
of 𝜎 , an appropriate feature 𝜙 of 𝜎 is of course also appropriate to that subsort
(by feature inheritance), but in addition, the value of 𝜙 at that subsort must be at
least as specific as it is at 𝜎 . This means the value is either 𝜎 ′ or a subsort thereof.
It may not be less specific, or, to put it differently, it may not be a supersort of
𝜎 ′.

Some sorts in the sort hierarchy enjoy a special status by being maximally
specific. They are called species. Species are sorts without proper subsorts. Sorts
that are maximally specific and lack any appropriate attribute receive a special
name and are called atomic sorts or simply atoms.

In addition to sorts and attributes, a signature provides relation symbols. Well-
known examples are a ternary append relation and a binary member relation, but
grammars may also require relations such as (often ternary) shuffle and binary
o-command. Each relation symbol comes with a positive natural number for the
number of arguments, its arity.

Putting all of this together, we obtain a definition of signatures as a septuple
with sort hierarchy 〈𝑆, v〉, species 𝑆𝑚𝑎𝑥 , attributes𝐴, and relation symbols 𝑅; the
function 𝐹 handles the feature appropriateness and function𝐴𝑟 is for the number
of arguments of each relation.

7A partial order is given by a set whose elements stand in a reflexive, antisymmetric and tran-
sitive ordering relation.

8See Figure 1 and its explanation in Section 2 for an example which also points out the subtle
distinction between the use of the term appropriate to (feature to sort) vs. the term appropriate
for (sort value for a feature at a given sort).
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Definition 1 Σ is a signature iff
Σ is a septuple 〈𝑆, v, 𝑆𝑚𝑎𝑥 , 𝐴, 𝐹, 𝑅,𝐴𝑟〉,
〈𝑆, v〉 is a partial order,
𝑆𝑚𝑎𝑥 = {𝜎 ∈ 𝑆 | for each 𝜎 ′ ∈ 𝑆, if 𝜎 ′ v 𝜎then 𝜎 = 𝜎 ′},
𝐴 is a set,
𝐹 is a partial function from 𝑆 ×𝐴 to 𝑆 ,
for each 𝜎1 ∈ 𝑆 , for each 𝜎2 ∈ 𝑆 , for each 𝜙 ∈ 𝐴,

if 𝐹 (𝜎1, 𝜙) is defined and 𝜎2 v 𝜎1

then 𝐹 (𝜎2, 𝜙) is defined and 𝐹 (𝜎2, 𝜙) v 𝐹 (𝜎1, 𝜙),
𝑅 is a finite set, and
𝐴𝑟 is a total function from 𝑅 to the positive integers.

The partial order 〈𝑆, v〉 is the sort hierarchy, and the set of sorts 𝑆 , just like
the set of attributes 𝐴, can in principle be infinite. In actual grammars it is fi-
nite, and in HPSG grammars it is also assumed that 𝑆 contains a top element,
which is a sort that subsumes all other sorts in the sort hierarchy. 𝑆𝑚𝑎𝑥 is the set
of maximally specific sorts, which will play a prominent role in the semantics
of descriptions. 𝐹 is a function for fixing the appropriateness conditions on at-
tributes and attribute values, and the conditions on that function reflect HPSG’s
restrictions on feature declarations. 𝐹 is called the (feature) appropriateness func-
tion. The last two lines of the definition provide the set of relation symbols, 𝑅,
with their arity, 𝐴𝑟 . Relations are at least unary.

Relations in HPSG often express relationships between lists (append, shuffle)
or sets (union, intersection). Lists are usually encoded in HPSG with attributes
FIRST and REST, and sorts list, elist (for empty list) and nelist (for non-empty list),
but of course the exact naming does not matter. A fragment of the sort hierarchy
which declares the sorts and attributes for regular lists is shown in Figure 2.

list


nelist
FIRST object
REST list


elist

Figure 2: Fragment of a sort hierarchy for encoding lists

An AVM description of a list with two synsem objects can then be notated as
in example (4a). Of course, grammar writers usually abbreviate list descriptions
in AVMs by a syntax with angled brackets for superior readability, as shown
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in (4b), a more transparent rendering of (4a), but that is just a convention that
presupposes the existence of a sort hierarchy fragment like in Figure 2.

(4) a.


nelist
FIRST synsem

REST

nelist
FIRST synsem
REST elist




b.
〈[

synsem
]
,
[
synsem

]〉
In combination with relations, grammarians occasionally require a more gen-

eralized use of lists (and sets) than their basic encoding above supports. Starting
already with Pollard & Sag (1994), we find structures in arguments of relations
which behave like regular lists or sets, except that they do not occur as attribute
values anywhere in the structures in which the relations are supposed to hold.9

In order to account for these applications of lists and sets in arguments of re-
lations, RSRL introduces chains. Chains are handled with dedicated sorts and
attributes with a fixed interpretation that extend every signature. They can be
thought of as a more flexible treatment of lists alongside their regular explicit
encoding in HPSG.

RSRL adds chains to all signatures. Informally, the extra symbols act very
much like sorts and attributes for lists: chain for list, echain and nechain for elist
and nelist, respectively, and the reserved symbols † and ⊲ for FIRST and REST. In
order to integrate the reserved new sort symbols with any signature a linguist
might specify, a distinguished sort metatop serves as unique top element of the
extended sort hierarchy. The extensions are defined for any signature by adding
reserved pseudo-sorts and pseudo-attributes and structuring the expanded sort
hierarchy in the desired way:

Definition 2 For each signature Σ = 〈𝑆, v, 𝑆𝑚𝑎𝑥 , 𝐴, 𝐹, 𝑅,𝐴𝑟〉,
𝑆 = 𝑆 ∪ {𝑐ℎ𝑎𝑖𝑛, 𝑒𝑐ℎ𝑎𝑖𝑛, 𝑛𝑒𝑐ℎ𝑎𝑖𝑛,𝑚𝑒𝑡𝑎𝑡𝑜𝑝},
v̂ = v ∪ {〈𝑒𝑐ℎ𝑎𝑖𝑛, 𝑐ℎ𝑎𝑖𝑛〉 , 〈𝑛𝑒𝑐ℎ𝑎𝑖𝑛, 𝑐ℎ𝑎𝑖𝑛〉} ∪

{
〈𝜎, 𝜎〉 |𝜎 ∈ 𝑆\𝑆

}
∪
{
〈𝜎,𝑚𝑒𝑡𝑎𝑡𝑜𝑝〉 |𝜎 ∈ 𝑆

}
,

𝑆𝑚𝑎𝑥 = 𝑆𝑚𝑎𝑥 ∪ {𝑒𝑐ℎ𝑎𝑖𝑛, 𝑛𝑒𝑐ℎ𝑎𝑖𝑛}, and
𝐴 = 𝐴 ∪ {†, ⊲}.

9See (3c) above for an example in the second argument of a binary relation set-of-elements.
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The extended sort hierarchy relation, v̂, simply integrates the new pseudo-
sorts into the given relation by ordering echain and nechain under chain, keeping
the reflexive closure intact and ordering every sort and pseudo-sort under the
new top element of the partial order, metatop. Corresponding to elist and nelist
above, echain and nechain are treated as maximally specific by including them
in the extension of 𝑆𝑚𝑎𝑥 , designated as 𝑆𝑚𝑎𝑥 .10 An AVM describing a chain with
two synsem objects corresponding to the description of a list with two synsem
objects in (4a) now appears as follows:

(5)


nechain
† synsem

⊲


nechain
† synsem
⊲ echain




Apart from the non-logical constants from (expanded) signatures and some
logical symbols, a countably infinite set of variables is needed, which will be
symbolized by 𝑉 . Lower-case letters from the Latin alphabet serve as variable
symbols, typically 𝑥 .

For expository reasons, the syntax of descriptions, to be introduced next, does
not employ AVMs, the common lingua franca of constraint-based grammar for-
malisms. The reasons are twofold: most importantly, although AVMs provide an
extremely readable and flexible notation, they are quite cumbersome to define as
a rigorous logical language which meets all the expressive needs of HPSG. Some
of this awkwardness in explicit definitions derives from the very flexibility and
redundancy in notation that makes AVMs perfect for everyday linguistic practice.
Second, the original syntax of RSRL is, by contrast, easy to define, and, as long
as it is not used for descriptions as complex as they occur in real grammars, its
expressions are still transparent for everyone who is familiar with AVMs. Read-
ers who want to explore how our description syntax relates to a formal syntax
of AVMs are referred to Richter (2004) for details and a correspondence proof.

The definition of the syntax of descriptions proceeds in two steps, quite similar
to first-order predicate logic. I will first introduce terms and then build formulæ
and descriptions from terms. Terms are essentially what is known to linguists as
paths, sequences of attributes:

10Extending the appropriateness function, 𝐹 , is unnecessary since the relevant effects follow
immediately from the semantics of the new reserved symbols in Definition 8.
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Definition 3 For each signature Σ = 〈𝑆, v, 𝑆𝑚𝑎𝑥 , 𝐴, 𝐹, 𝑅,𝐴𝑟〉, 𝑇 Σ is the smallest set
such that
: ∈ 𝑇 Σ,
for each 𝑥 ∈ 𝑉 , 𝑥 ∈ 𝑇 Σ,
for each 𝜙 ∈ 𝐴 and each 𝜏 ∈ 𝑇 Σ, 𝜏𝜙 ∈ 𝑇 Σ.

Simply put, sequences of attributes (including the two pseudo-attributes † and
⊲) starting either with the colon or a single variable are Σ terms. Equipped with
terms, we can immediately proceed to formulæ, the penultimate step on the way
to descriptions. There are three kinds of simple formulæ: formulæ that assign a
sort to the value of a path, formulæ which state that two paths have the same
value (structure sharing, in linguistic terminology), and relational formulæ. Com-
plex formulæ can be built from these by existential and universal quantification,
negation, and the classical binary logical connectives.

Definition 4 For each signature Σ = 〈𝑆, v, 𝑆𝑚𝑎𝑥 , 𝐴, 𝐹, 𝑅,𝐴𝑟〉, 𝐷Σ is the smallest set
such that
for each 𝜎 ∈ 𝑆 , for each 𝜏 ∈ 𝑇 Σ, 𝜏 ∼ 𝜎 ∈ 𝐷Σ,
for each 𝜏1, 𝜏2 ∈ 𝑇 Σ, 𝜏1 ≈ 𝜏2 ∈ 𝐷Σ,
for each 𝜌 ∈ 𝑅, for each 𝑥1, . . . , 𝑥𝐴𝑟 (𝜌) ∈ 𝑉 , 𝜌 (𝑥1, . . . , 𝑥𝐴𝑟 (𝜌) ) ∈ 𝐷Σ,
for each 𝑥 ∈ 𝑉 , for each 𝛿 ∈ 𝐷Σ, ∃𝑥𝛿 ∈ 𝐷Σ, (analogous for ∀)
for each 𝛿 ∈ 𝐷Σ, ¬𝛿 ∈ 𝐷Σ,
for each 𝛿1, 𝛿2 ∈ 𝐷Σ, and (𝛿1 ∧ 𝛿2) ∈ 𝐷Σ. (analogous for ∨,→,↔)

In this syntax, the Head Feature Principle of (3a) can be rendered as in (6a) or,
equivalently, as in (6b).11

(6) a. (: ∼ headed-phrase) →
(: SYNSEM LOCAL CATEGORY HEAD ≈
: HEAD-DTR SYNSEM LOCAL CATEGORY HEAD)

b. (: ∼ headed-phrase) →
∃𝑥 (: SYNSEM LOCAL CATEGORY HEAD ≈ 𝑥 ∧

: HEAD-DTR SYNSEM LOCAL CATEGORY HEAD ≈ 𝑥)

Finally, 𝐹𝑉 is a function that determines for every Σ term and Σ formula the
set of variables that occur free in them.

Definition 5 For each signature Σ = 〈𝑆, v, 𝑆𝑚𝑎𝑥 , 𝐴, 𝐹, 𝑅,𝐴𝑟〉,
𝐹𝑉 (:) = {},

11The brackets in the antecedent are for readability.
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for each 𝑥 ∈ 𝑉 , 𝐹𝑉 (𝑥) = {𝑥},
for each 𝜏 ∈ 𝑇 Σ, for each 𝜙 ∈ 𝐴, 𝐹𝑉 (𝜏𝜙) = 𝐹𝑉 (𝜏),
for each 𝜏 ∈ 𝑇 Σ, for each 𝜎 ∈ 𝑆, 𝐹𝑉 (𝜏 ∼ 𝜎) = 𝐹𝑉 (𝜏),
for each 𝜏1, 𝜏2 ∈ 𝑇 Σ, 𝐹𝑉 (𝜏1 ≈ 𝜏2) = 𝐹𝑉 (𝜏1) ∪ 𝐹𝑉 (𝜏2),
for each 𝜌 ∈ 𝑅, for each 𝑥1, . . . , 𝑥𝐴𝑟 (𝜌) ∈ 𝑉 ,

𝐹𝑉 (𝜌 (𝑥1, . . . , 𝑥𝐴𝑟 (𝜌) )) =
{
𝑥1, . . . , 𝑥𝐴𝑟 (𝜌)

}
,

for each 𝛿 ∈ 𝐷Σ, for each 𝑥 ∈ 𝑉 , 𝐹𝑉 (∃𝑥𝛿) = 𝐹𝑉 (𝛿)\{𝑥}, (analogous for ∀)
for each 𝛿 ∈ 𝐷Σ, 𝐹𝑉 (¬𝛿) = 𝐹𝑉 (𝛿),
for each 𝛿1, 𝛿2 ∈ 𝐷Σ, 𝐹𝑉 ((𝛿1 ∧ 𝛿2)) = 𝐹𝑉 (𝛿1) ∪ 𝐹𝑉 (𝛿2). (analogous for ∨,→,↔)

Informally, an occurrence of a variable is free in a Σ term or a Σ formula if it is
not bound by a quantifier. Σ formulæ without free occurrences of variables are
a kind of formula of special interest, and the term Σ description is reserved for
them:

Definition 6 For each signature Σ, 𝐷Σ
0 =

{
𝛿 ∈ 𝐷Σ |𝐹𝑉 (𝛿) = {}

}
.

𝐷Σ
0 is the set of Σ descriptions. When a signature is fixed by the context, or

when the exact signature is irrelevant in the discussion, we can simply speak of
descriptions instead of Σ descriptions. Descriptions are the syntactic units that
linguists use in grammar writing. (6a) and (6b) are descriptions. Grammars, as
we will see in Section 5, are written by declaring a signature and stating a set of
descriptions. But before grammars and their meaning can be investigated, the
meaning of signatures and of descriptions must be explained.

4 Meaning of signatures and descriptions

Descriptions of RSRL are interpreted similarly to expressions of classical logics
such as first order logic, except that they are not evaluated as true or false in a
given structure; instead, they denote collections of structures.

Defining the meaning of descriptions begins with delineating the structures
which interpret signatures. In particular, species and attributes must receive a
meaning, which should be tied to the HPSG-specific intentions behind sort hier-
archies and feature declarations; and so must relation symbols, whose interpreta-
tion should heed their arity. Due to some extra restrictions which will ultimately
be imposed on the interpretation of relation symbols (to meet intuitions of gram-
marians) and whose formulation presupposes a notion of term interpretation,
I start with initial interpretations. They will be refined in a second step to full
interpretations (Definition 13).
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Some additional notation is convenient in the upcoming definition of initial
interpretations. If 𝑆 is a set, 𝑆∗ is the set of all finite sequences (or 𝑛-tuples) of el-
ements of 𝑆 . 𝑆+ is the same set without the empty sequence. 𝑆 is short for the set
𝑆 ∪ 𝑆∗. Initial interpretations employ a set U of entities which form the domain
of grammars. The functions S, A and R interpret sort symbols, attribute sym-
bols and relation symbols in that domain, respecting certain general restrictions
which come with HPSG’s ontological assumptions about languages. In particu-
lar, the behavior of attribute interpretation is tied to the feature appropriateness
conditions, i.e. feature inheritance in the sort hierarchy.

Definition 7 For each signature Σ = 〈𝑆, v, 𝑆𝑚𝑎𝑥 , 𝐴, 𝐹, 𝑅,𝐴𝑟〉, I is an initial Σ inter-
pretation iff
I = 〈U, S, A, R〉,
U is a set,
S is a total function from U to 𝑆𝑚𝑎𝑥 ,
A is a total function from 𝐴 to the set of partial functions from U to U,
for each 𝜙 ∈ 𝐴 and each 𝑢 ∈ U

if A(𝜙)(𝑢) is defined
then 𝐹 (S(𝑢), 𝜙) is defined, and S(A(𝜙)(𝑢)) v 𝐹 (S(𝑢), 𝜙), and

for each 𝜙 ∈ 𝐴 and each 𝑢 ∈ U,
if 𝐹 (S(𝑢), 𝜙) is defined then A(𝜙) (𝑢) is defined,

R is a total function from 𝑅 to the power set of
⋃
𝑛∈N

U
𝑛 , and

for each 𝜌 ∈ 𝑅, R(𝜌) ⊆ U
𝐴𝑟 (𝜌) .

Initial Σ interpretations are quadruples consisting of four components. The
first three of them will remain unchanged in full Σ interpretations (Definition 13).
The elements of U are entities which populate the universe of structures. Their
ontological status has been debated fiercely in HPSG, and will be discussed in
Sections 5 and 6. For the moment, assume that they are either linguistic ob-
jects or appropriate abstractions thereof. S assigns each object in the universe a
species, which is another way of saying that each object is of exactly one maxi-
mally specific sort. This is what is known as the property of being sort-resolved.
The attribute interpretation function A interprets each attribute symbol as a (par-
tial) function that assigns an object of the universe to an object of the universe,
and as such it obeys the restrictions of the feature declarations of the signature,
embodied in the function 𝐹 : attributes are defined on all and only those objects
𝑢1 which have a species to which the attributes are appropriate according to 𝐹 ;
and the object which𝑢1 is mapped to by the attribute must in turn be of a species
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which is appropriate for the attribute (at the species of𝑢1). This is what is known
as the property of interpreting structures as being totally well-typed. Originally
both of these properties of interpreting structures were formulated with respect
to so-called feature structures, but, as we will see below, this conception of inter-
preting structures for grammars was soon given up for philosophical reasons.12

The relation interpretation function R finally interprets𝑛-ary relation symbols as
sets of 𝑛-tuples of objects. However, there is an additional option, which makes
the definition look more complex: an object in an 𝑛-tuple may in fact not be an
atomic object; it can alternatively be a tuple of objects itself. These tuples in ar-
gument positions of relations will be described as chains with the pseudo-sorts
and pseudo-attributes, which were added to signatures in Definition 2 above. As
pointed out there, chains are a construct which gives grammarians the flexibility
to use (finite) lists in all the ways in which they are put in relations in actual
HPSG grammars (see (3c) for an example).

Since chains are provided by an extension of the set of sort symbols and at-
tributes (Definition 2), the interpretation of the additional symbols must be de-
fined separately. This is very simple, since these symbols behave essentially anal-
ogously to the conventional sort and attribute symbols of HPSG’s list encoding.

Definition 8 For each signature Σ = 〈𝑆, v, 𝑆𝑚𝑎𝑥 , 𝐴, 𝐹, 𝑅,𝐴𝑟〉, for each initial Σ in-
terpretation I = 〈U, S, A,R〉,
Ŝ is the total function from U to 𝑆 such that

for each 𝑢 ∈ U, Ŝ (𝑢) = S (𝑢),

for each 𝑢1, . . . , 𝑢𝑛 ∈ U, Ŝ (〈𝑢1, . . . , 𝑢𝑛〉) =
{
𝑒𝑐ℎ𝑎𝑖𝑛 if 𝑛 = 0,
𝑛𝑒𝑐ℎ𝑎𝑖𝑛 if 𝑛 > 0

, and

Â is the total function from 𝐴 to the set of partial functions from U to U such that
for each 𝜙 ∈ 𝐴, Â (𝜙) = A (𝜙),
Â (†) is the total function from U+ to U such that for each 〈𝑢0, . . . , 𝑢𝑛〉 ∈ U+,

Â (†) (〈𝑢0, . . . , 𝑢𝑛〉) = 𝑢0, and
Â (⊲) is the total function from U+ to U∗ such that for each 〈𝑢0, . . . , 𝑢𝑛〉 ∈ U+,

Â (⊲) (〈𝑢0, . . . , 𝑢𝑛〉) = 〈𝑢1, . . . , 𝑢𝑛〉.

Ŝ is the expanded species assignment function, and Â is the expanded attribute
interpretation function. The pseudo-species symbols echain and nechain label
empty chains and non-empty chains, respectively. Given a non-empty chain, the
pseudo-attribute † picks out its first member, corresponding to the function of
the FIRST attribute on non-empty lists. Conversely, ⊲ cuts off the first element of

12Of course, the informal term feature structure is still alive among linguists, and in a technical
sense, feature structures are essential constructs for implementation platforms.
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a non-empty chain and returns the remainder of the chain, as does the standard
attribute REST for lists.

In addition to attributes, terms may also contain variables (Definition 3). Term
interpretation thus requires a notion of variable assignments in (initial) interpre-
tations.

Definition 9 For each signature Σ, for each initial Σ interpretation I = 〈U, S, A, R〉,
GI = U

𝑉 is the set of variable assignments in I.

An element of GI (the set of total functions from the set of variables to the set
of objects and chains of objects of U) will be notated as 𝑔, following a convention
frequently observed in predicate logic. With variable assignments in (initial) in-
terpretations, variables denote objects in the universe U and chains of objects of
the universe.

Terms map objects of the universe to objects (or chains of objects) of the uni-
verse as determined by a term interpretation function T

𝑔
I :

Definition 10 For each signature Σ = 〈𝑆, v, 𝑆𝑚𝑎𝑥 , 𝐴, 𝐹, 𝑅,𝐴𝑟〉, for each initial Σ
interpretation I = 〈U, S, A,R〉, for each 𝑔 ∈ GI, T

𝑔
I is the total function from𝑇 Σ to the

set of partial functions from U to U such that for each 𝑢 ∈ U,
T𝑔I (:) (𝑢) is defined and T𝑔I (:)(𝑢) = 𝑢,
for each 𝑥 ∈ 𝑉 , T𝑔I (𝑥)(𝑢) is defined and T

𝑔
I (𝑥)(𝑢) = 𝑔(𝑥),

for each 𝜏 ∈ 𝑇 Σ, for each 𝜙 ∈ 𝐴,
T
𝑔
I (𝜏𝜙) (𝑢) is defined iff T

𝑔
I (𝜏) (𝑢) is defined and Â(𝜙) (T𝑔I (𝜏)(𝑢)) is defined,

and
if T𝑔I (𝜏𝜙)(𝑢) is defined then T𝑔I (𝜏𝜙)(𝑢) = Â(𝜙) (T𝑔I (𝜏) (𝑢)).

T
𝑔
I is called the term interpretation function under I under 𝑔. Σ terms either start

with a variable or with the special symbol colon (‘:’). The colon denotes the
identity function. Interpreted on any object, it returns that object. If a term 𝜏
starts with the colon, its term interpretation starts, so to speak, at the object 𝑢
to which it is applied (T𝑔I (𝜏)(𝑢)) and, if each subsequent attribute in 𝜏 is defined
on the object to which the interpretation of the earlier attribute(s) took us, the
term interpretation will yield the object reached by the last attribute. When a
Σ term starts with a variable 𝑥 , the given variable assignment 𝑔 will determine
the starting point of interpreting the sequence of attributes (𝑔(𝑥)). Of course,
variables may be assigned chains of objects, in which case the symbols of the
expanded attribute set can be used to navigate the elements of the chain.

The set of objects which are reachable from a single given object in an in-
terpretation by following sequences of attribute interpretations is important for
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the way in which quantification is conceived of by grammarians. It also plays
a role in thinking about which objects can in principle stand in a relation, and
it is crucial for explicating different notions of the meaning of grammars. Defi-
nition 11 captures this notion, the set of components of an object in an (initial)
interpretation. Note that all terms in Definition 11 start with the colon.

Definition 11 For each signature Σ = 〈𝑆, v, 𝑆𝑚𝑎𝑥 , 𝐴, 𝐹, 𝑅,𝐴𝑟〉, for each initial Σ
interpretation I = 〈U, S, A,R〉, for each 𝑢 ∈ U,

C𝑢I =

𝑢
′ ∈ U

��������
for some 𝑔 ∈ GI,
for some 𝜋 ∈ 𝐴∗,

T
𝑔
I (:𝜋)(𝑢) is defined, and
𝑢 ′ = T

𝑔
I (:𝜋)(𝑢)

.
C𝑢I is the set of components of 𝑢 in I. The purpose of C𝑢I is to capture the set

of all objects that are reachable from some object 𝑢 in the universe by follow-
ing a path of interpreted attributes. Thinking of these configurations as directed
graphs, the set of components of 𝑢 in I is the set of nodes that can be reached by
following any sequence of vertices (in the direction of attribute interpretation)
starting from 𝑢. This corresponds to how linguists normally conceive of the sub-
structures of some structured object.13 The set of components of objects is used
in two ways in the definitions of full interpretations and description denotations:
it restricts the set of objects that are permitted in relations, and it provides the
domain of quantification in quantificational expressions of the logical language.

According to Definition 7 of initial interpretations, relation symbols are simply
interpreted as tuples of objects (and chains of objects) in the universe of interpre-
tation. However, HPSGians have a slightly more restricted notion of relations:
for them, relations hold between objects that occur within a sign (or a similar
kind of larger linguistic structure); they are not relations between objects that
occur in separate (unconnected) signs. The following notion of possible relation
tuples in an interpretation captures this intuition.

Definition 12 For each signature Σ = 〈𝑆, v, 𝑆𝑚𝑎𝑥 , 𝐴, 𝐹, 𝑅,𝐴𝑟〉, for each initial Σ
interpretation I = 〈U, S, A,R〉,

RTI =
⋃
𝑛∈N

 〈𝑢1, . . . , 𝑢𝑛〉 ∈ U
𝑛

������
for some 𝑢 ∈ U,
for each 𝑖 ∈ N, 1 ≤ 𝑖 ≤ 𝑛
𝑢𝑖 ∈ C𝑢I

.
13Phrasing this more carefully, the object itself is not structured, but there is a structure gen-

erated by the object by following the vertices, or more technically, by the composition of
functions which interpret attribute symbols.
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RTI is the set of possible relation tuples in I. Possible relation tuples in an
initial interpretation are characterized by the existence of some object in the
interpretation from which each object in a relation tuple can be reached by a
sequence of attribute interpretations. In case an argument in a tuple is a chain,
then the objects on the chain are thus restricted.

The notion of full interpretations integrates the restriction on possible rela-
tions, keeping everything else unchanged from initial interpretations:

Definition 13 For each signature Σ = 〈𝑆, v, 𝑆𝑚𝑎𝑥 , 𝐴, 𝐹, 𝑅,𝐴𝑟〉, for each initial Σ
interpretation I′ = 〈U′, S′, A′,R′〉, for the set of possible relation tuples in I′, RTI′ ,
I = 〈U, S, A, R〉 is a full Σ interpretation iff
U = U′, S = S′, A = A′, and R is a total function from 𝑅 to the power set of RTI′ , and
for each 𝜌 ∈ 𝑅, R(𝜌) ⊆

(
RTI′ ∩ U

𝐴𝑟 (𝜌)
)
.

It can be checked that variable assignments in initial interpretations and sets of
components of objects in initial interpretations are the same as in corresponding
full interpretations with the same universe, species interpretation and attribute
interpretation functions, since variable assignments and sets of components of
objects do not depend on the interpretation of relations. From now on, all of the
above will be used with respect to full interpretations, and full interpretations
will simply be called interpretations.

Everything is now ready to define the meaning of formulæ in interpretations as
sets of objects in an interpretation. A sort assignment formula constructed from a
term, a reserved assignment symbol and a sort symbol such as :CASE∼nominative
denotes the set of objects in the interpretation on which the CASE attribute is de-
fined and, when interpreted on them, leads to an object of sort nominative; and
the path equation :SYNSEM LOCAL CATEGORY HEAD ≈ :HEAD-DTR SYNSEM LOCAL
CATEGORY HEAD denotes those objects on which the two given paths are defined
and lead to the same object. Relational formulæ, the third kind of atomic formula,
also denote sets of objects and will be discussed in more detail below. Existen-
tial quantification and universal quantification are restricted to components of
objects; and the logical connectives are treated with the familiar operations of
set union (disjunction), set intersection (conjunction) and set complement (nega-
tion), or with combinations thereof (implication, bi-implication). The definition
of Σ formula denotation for quantificational expressions needs a notation for
modifying variable assignments with respect to the value of designated variables.
For any variable assignment 𝑔 ∈ GI, for 𝑔′ = 𝑔[𝑥 ↦→ 𝑢], 𝑔′ is just like 𝑔 except
that 𝑔′ maps variable 𝑥 to object 𝑢 (possibly a tuple).
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Definition 14 For each signature Σ = 〈𝑆, v, 𝑆𝑚𝑎𝑥 , 𝐴, 𝐹, 𝑅,𝐴𝑟〉, for each (full) Σ in-
terpretation I = 〈U, S, A,R〉, for each 𝑔 ∈ GI, D

𝑔
I is the total function from 𝐷Σ to the

power set of U such that
for each 𝜏 ∈ 𝑇 Σ, for each 𝜎 ∈ 𝑆 ,

D
𝑔
I (𝜏 ∼ 𝜎) =

{
𝑢 ∈ U

����T𝑔I (𝜏) (𝑢) is defined, and
Ŝ
(
T𝑔I (𝜏)(𝑢)

)
v̂ 𝜎

}
,

for each 𝜏1, 𝜏2 ∈ 𝑇 Σ,

D𝑔I (𝜏1 ≈ 𝜏2) =
𝑢 ∈ U

������T
𝑔
I (𝜏1) (𝑢) is defined,

T𝑔I (𝜏2)(𝑢) is defined, and
T
𝑔
I (𝜏1) (𝑢) = T

𝑔
I (𝜏2) (𝑢)

,
for each 𝜌 ∈ 𝑅, for each 𝑥1, . . . , 𝑥𝐴𝑟 (𝜌) ∈ 𝑉 ,
D𝑔I

(
𝜌 (𝑥1, . . . , 𝑥𝐴𝑟 (𝜌) )

)
=
{
𝑢 ∈ U

�� 〈𝑔(𝑥1), . . . , 𝑔(𝑥𝐴𝑟 (𝜌) )
〉
∈ R(𝜌)

}
,

for each 𝑥 ∈ 𝑉 , for each 𝛿 ∈ 𝐷Σ, D𝑔I (∃𝑥𝛿) =
{
𝑢 ∈ U

�����for some 𝑢 ′ ∈ C𝑢I
𝑢 ∈ D

𝑔 [𝑥 ↦→𝑢′]
I (𝛿)

}
,

for each 𝑥 ∈ 𝑉 , for each 𝛿 ∈ 𝐷Σ, D𝑔I (∀𝑥𝛿) =
{
𝑢 ∈ U

�����for each 𝑢 ′ ∈ C𝑢I
𝑢 ∈ D

𝑔 [𝑥 ↦→𝑢′]
I (𝛿)

}
,

for each 𝛿 ∈ 𝐷Σ, D𝑔I (¬𝛿) = U\D𝑔I (𝛿),
for each 𝛿1, 𝛿2 ∈ 𝐷Σ, D𝑔I ((𝛿1 ∧ 𝛿2)) = D

𝑔
I (𝛿1) ∩ D

𝑔
I (𝛿2)

for each 𝛿1, 𝛿2 ∈ 𝐷Σ, D𝑔I ((𝛿1 ∨ 𝛿2)) = D𝑔I (𝛿1) ∪ D𝑔I (𝛿2)
for each 𝛿1, 𝛿2 ∈ 𝐷Σ, D𝑔I ((𝛿1 → 𝛿2)) =

(
U\D𝑔I (𝛿1)

)
∪ D𝑔I (𝛿2), and

for each 𝛿1, 𝛿2 ∈ 𝐷Σ,
D
𝑔
I ((𝛿1 ↔ 𝛿2)) = ((U\D𝑔I (𝛿1)) ∩ (U\D𝑔I (𝛿2))) ∪ (D𝑔I (𝛿1) ∩ D

𝑔
I (𝛿2)).

D
𝑔
I is the Σ formula interpretation function with respect to I under a variable

assignment, 𝑔, in I. Sort assignment formulæ, 𝜏 ∼ 𝜎 , denote sets of objects on
which the attribute path 𝜏 is defined and leads to an object𝑢 ′ of sort 𝜎 . If 𝜎 is not a
species, the object𝑢 ′ must be of a maximally specific subsort of 𝜎 . Path equations
of the form 𝜏1 ≈ 𝜏2 hold of an object 𝑢 when path 𝜏1 and path 𝜏2 lead to the same
object 𝑢 ′. And an 𝑛-ary relational formula 𝜌 (𝑥1, . . . , 𝑥𝑛) denotes a set of objects
such that the 𝑛-tuples of objects (or chains of objects) assigned to the variables
𝑥1 to 𝑥𝑛 are in the denotation of the relation 𝜌 . This means that a relational
formula either denotes the entire universe U or the empty set, depending on the
variable assignment 𝑔 in I. For example, according to Definition 14, the formula
append(𝑥1, 𝑥2, 𝑥3) denotes the universe of objects if the triple 〈𝑔(𝑥1), 𝑔(𝑥2), 𝑔(𝑥3)〉
is in R(append), or else the empty set. We will return to the meaning of relational
formulæ after defining the meaning of grammars to confirm that this is a useful
way to determine their denotation.

Negation is interpreted as set complement of the denotation of a formula, con-
junction and disjunction of formulæ as set intersection and set union of the
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denotations of two formulæ, respectively. The meaning of implication and bi-
implication follows the pattern of classical logic and could alternatively be de-
fined on the basis of negation and disjunction (or conjunction) alone. Quantifica-
tional expressions are special in that they implement the idea of restricted quan-
tification by referring to the set of components of objects in I. An existentially
quantified formula, ∃𝑥𝛿 , denotes the set of objects𝑢 such that there is at least one
component (or chain of components)𝑢 ′ of𝑢, and interpreting 𝑥 as𝑢 ′ leads to 𝛿 de-
scribing𝑢. With universal quantification, the corresponding condition must hold
for all components (or chains of components) of the objects 𝑢 in the denotation
of the quantified formula. Again turning to the application of these definitions
of formula denotations in grammar writing, the intuition is that linguists quan-
tify over the components of grammatical structures (sentences, phrases), and not
over a universe of objects that may include unrelated sentences and grammatical
structures, or components thereof: a certain kind of object exists within a given
structure, or all objects in a certain structure fulfill certain conditions.

A standard proof shows that the denotation of Σ formulæ without free occur-
rences of variables, i.e. the denotation of Σ descriptions, is independent of the
initial choice of variable assignment. For Σ descriptions, I can thus define a sim-
pler Σ description denotation function with respect to an interpretation I, DI:

Definition 15 For each signature Σ = 〈𝑆, v, 𝑆𝑚𝑎𝑥 , 𝐴, 𝐹, 𝑅,𝐴𝑟〉, for each (full) Σ in-
terpretation I = 〈U, S, A,R〉, DI is the total function from 𝐷Σ

0 to the power set of U
such that DI(𝛿) =

{
𝑢 ∈ U

��for each 𝑔 ∈ GI, 𝑢 ∈ D
𝑔
I (𝛿)

}
.

For each description 𝛿 , DI returns the set of objects in the universe of I that
are described by 𝛿 . With Σ descriptions and their denotation as sets of objects,
everything is in place to symbolize all grammar principles of a grammar such as
the one presented by Pollard & Sag (1994) in logical notation, and the grammar
principles receive an interpretation along the lines informally characterized by
Pollard and Sag. A comprehensive logical rendering of their grammar of English
can be found in Appendix C of Richter (2004). It includes the treatments of (fi-
nite) sets and of parametric sorts (such as list(synsem)), which are not specifically
addressed – but implicitly covered – in the preceding presentation. Moreover, as
shown there, all syntactic constructs of the logical languages above are necessary
to achieve that goal without reformulating the grammar.

5 Meaning of grammars

Grammars comprise sets of descriptions, the principles of grammar. These sets of
principles are often called theories in the context of logical languages for HPSG,
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although this terminology can occasionally be confusing.14 Theories, i.e. sets of
descriptions, are symbolized with 𝜃 . A grammar is simply a theory together with
a signature:

Definition 16 Γ is a grammar iff
Γ is a pair 〈Σ, 𝜃〉, where Σ is a signature, and 𝜃 ⊆ 𝐷Σ

0 .

Essentially, the denotation of a theory can be thought of as the denotation of
the conjunction of the descriptions in the theory. The difference is that theories
can, in principle (and contrary to deliberate linguistic convention), be infinite in
the sense of containing infinitely many descriptions. Conjunctions of descrip-
tions are finite, since conjunctive formulæ are finite.

Definition 17 For each signature Σ, for each Σ interpretation I = 〈U, S, A,R〉, ΘI is
the total function from the power set of 𝐷Σ

0 to the power set of U such that for each
𝜃 ⊆ 𝐷Σ

0 ,
ΘI(𝜃 ) =

{
𝑢 ∈ U

��for each 𝛿 ∈ 𝜃 , 𝑢 ∈ DI(𝛿)
}
.

ΘI is the theory denotation function with respect to I. A theory consisting of
a set of descriptions holds of every object 𝑢 in the universe exactly if every de-
scription in the theory holds of 𝑢. In short, a theory denotes the set of objects
that are described by everything in the theory. These objects do not violate any
restriction that the theory expresses in one of its descriptions.

A first approximation to the meaning of grammars is provided by the notion
of a Γ model, a model of a grammar Γ:

Definition 18 For each grammar Γ = 〈Σ, 𝜃〉, for each Σ interpretation I =
〈U, S, A,R〉, I is a Γ model iff ΘI(𝜃 ) = U.

A Γ model is an interpretation I = 〈U, S, A,R〉 in which every description in the
theory of grammar Γ describes every object in the interpretation’s universe U.
In other words, each object in the interpretation fulfills all conditions which are
imposed by the grammar principles. There is no object in a Γ model that violates
any principle.

Models of grammars are an appropriate starting point for revisiting the de-
notation of relational formulæ. Assume we want to define a unary relation
synsem-rel which contains all objects of sort synsem of a typical HPSG gram-
mar. To achieve this, we declare the relation symbol synsem-rel in the signature
and we add the description in (7) to the theory of the grammar Γ:

14The problem with this term is that it can be argued that theories, defined this way, do not
constitute what would traditionally be called a theory of a language, since many central aspects
of a theory in the latter sense are not embodied in that kind of formalized theory.
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(7) ∀𝑥 (synsem-rel(𝑥) ↔ 𝑥 ∼ synsem)

Consider a non-empty Γ model I containing words and phrases. Since by as-
sumption (7) is in the theory of Γ, and we consider a model, (7) describes every
object in the universe of I. By the bi-implication, every component object of
every object 𝑢 in I which is of sort synsem is in R(synsem-rel) (right to left),
and every element of R(synsem-rel) is a synsem object (left to right). But if the
bi-implication in (7) holds in both directions in I, it follows that the expression
∃𝑥 synsem-rel(𝑥) describes every object 𝑢 in I which has a component that is
in the synsem-rel relation. The expression ∀𝑥 synsem-rel(𝑥) describes every
object in I all of whose components are in the synsem-rel relation.15

Now assume we have a description much like (7) in our grammar theory, but
instead of defining the meaning of synsem-rel, it defines the meaning of append:
the new description says that for every object in a grammar model which con-
tains three (not necessarily pairwise distinct) lists as components, the lists are in
the ternary append relation as triple 〈𝑙1, 𝑙2, 𝑙3〉 iff 𝑙3 is the concatenation of 𝑙1 and
𝑙2 (in that order). Then we can use this append relation in yet another grammar
principle as follows:16

(8) head-filler-phrase ⇒ ∃ 1 ∃ 2 ∃ 3©­«

PHON 3
NON-HD-DTRS|FIRST|PHON 1
HEAD-DTR|PHON 2

 ∧ append( 1 , 2 , 3 )ª®¬
The filler daughter is the only non-head daughter in a head-filler phrase. In

English, the phonology of the filler daughter precedes the phonology of the head
daughter. According to (8), a head-filler phrase has three components, 1 , 2 , and 3

such that they are the list values of the PHON attributes of the non-head daughter,
the head daughter and the phrase as a whole, and they are in the append relation
(in the given order). But being in the append relation means that list 3 is the
concatenation of list 1 and list 2 . Obviously, the denotation of relational formulæ
works as intended in grammar models.

Linguists use grammars to make predictions about the grammatical structures
of languages. In classical generative terminology, a grammar undergenerates if
there are grammatical structures it does not capture. It overgenerates if it permits

15Of which there are none, given the usual structure of signs where synsem objects always have
components of other sorts.

16In RSRL syntax, (8) can be written as
: ∼head-filler-phrase →
∃𝑥1 ∃𝑥2 ∃𝑥3
(: PHON ≈ 𝑥3 ∧ : HEAD-DTR PHON ≈ 𝑥2 ∧ : NON-HD-DTRS FIRST PHON ≈ 𝑥1 ∧ append(𝑥1, 𝑥2, 𝑥3))
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structures that are deemed ungrammatical. It is uncontroversial that an appro-
priate notion of the meaning of a grammar should support linguists in making
such predictions with their grammars. However, the notion of Γ models in Def-
inition 18 is not strong enough for this purpose. To see this, suppose there is a
signature Σ which is fit to describe the entire English language, and there is a the-
ory 𝜃 which expresses correctly all and only what there is to say about English.
Interestingly, a 〈Σ, 𝜃〉 model I of this perfect grammar of English can be arbitrar-
ily small, as long as every object in the Σ interpretation I is described by every
grammar principle in 𝜃 , as this is a condition on models of a grammar. Therefore
a 〈Σ, 𝜃〉 model of our perfect grammar may consist of nothing but a structure of
the single sentence Elon is going to Mars. This follows from the definition of Γ
models, because any appropriate grammar of English must describe all objects
that together make up this well-formed sentence. But this one-sentence model
of the grammar of English is obviously too small to count as a good candidate
for the English language, because English contains much more than this single
sentence. It follows that in arbitrarily chosen models, it cannot be detected if a
grammar undergenerates or overgenerates.

King’s (1999) exhaustive models are a possibility to define the meaning of gram-
mars in such a way that the models reflect the basic expectations of generative
linguists. The underlying intuition is to choose a maximal model which con-
tains a congruent copy of any configuration of objects which can be found in
some model of the grammar. This way, the model chosen for the meaning of
a grammar is in a relevant sense big enough so that all the consequences of the
grammar can be observed in it. If the grammar overgenerates, the model will con-
tain ill-formed structures. If the grammar undergenerates, expected well-formed
structures will be absent.

The simplest way to spell this out is by considering each and every alternative
model I′ of a grammar and observing that whenever you can describe something
in an alternative model I′ with an arbitrary set of descriptions, that set of descrip-
tions also picks out something in the targeted, sufficiently large model I:

Definition 19 For each grammar Γ = 〈Σ, 𝜃〉, for each Σ interpretation I,
I is an exhaustive Γ model iff
I is a Γ model, and
for each 𝜃 ′ ⊆ 𝐷Σ

0 , for each Σ interpretation I′,
if I′ is a Γ model and ΘI′ (𝜃 ′) ≠ ∅ then ΘI(𝜃 ′) ≠ ∅.

Any grammar with a non-empty model also has a non-empty exhaustive mod-
el. In addition to being a model of a given grammar Γ = 〈Σ, 𝜃〉, an exhaustive Γ
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model I has the property that each arbitrarily chosen set of descriptions 𝜃 ′ which
denotes anything at all in any Γ model also denotes something in I. An alternative
algebraic way to characterize this requirement is to say that any configuration
of objects in any Γ model has a congruent counterpart in an exhaustive Γ model.
At the same time, since an exhaustive model is from a special class of models, if
a description in 𝜃 does not describe some object in a Γ interpretation I′, then this
object in I′ cannot have a counterpart in an exhaustive Γ model.

This is sufficient to capture relevant grammar-theoretic notions of linguistics:
a grammar Γ of a language L overgenerates iff an exhaustive Γ model contains
configurations that are not (congruent to) grammatical expressions in L; it un-
dergenerates iff an exhaustive Γ model does not contain configurations which
are (congruent to) grammatical expressions in L.

6 Alternative conceptions of the meaning of grammars

Section 2 gave an informal overview of four different ways to conceive of mod-
els which explain the meaning of HPSG grammars: Theory T1 of Pollard & Sag
(1994) views the adequate model as a collection of the object types of the expres-
sions of the language L that a given grammar describes. T2 by King (1999) takes
the intended model to be one from a class of models which contains all possible
linguistic tokens of L. T3 (Pollard 1999) constructs the model Γ of language L
as a collection of mathematical idealizations such that each grammatical struc-
ture of L should find a structurally isomorphic counterpart in the model. This
model is called the strong generative capacity of grammar Γ. And T4 by Richter
(2007) defines a schematic extension to grammars called their normal form which
guarantees the existence of a model (a minimal exhaustive model) in which all
and only the grammatical utterances of L find exactly one structurally matching
configuration each, without commiting to the ontological status of the configu-
rations in the model.

All four share the common core of aiming at capturing the predictions of a
grammar in the sense of directly reflecting possible overgeneration or undergen-
eration (Section 5): all and only the grammatical structures of L are supposed to
be in the intended model or to find a corresponding counterpart in it. The signifi-
cant differences between T1, T2, T3 and T4 reside in their assumptions about the
nature of the model. The decision of what kind of entities populate the model
determines the ontological and structural properties of the entities in the model,
which in turn leads to substantial technical differences in the construction of the
models. The four theories T1–T4 are numbered chronologically in the order in
which they were developed.
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Deviating from chronological order, we begin with T2, the theory of exhaus-
tive models (Definition 19). T2 has the distinguished property of insisting on
a token model of the language L of a given grammar, 〈Σ, 𝜃〉. According to T2,
actual well-formed linguistic tokens are the immediate object of grammatical de-
scription. They are the objects 𝑢 in the intended exhaustive model I = 〈U, S, A,R〉.
For any occurrence of an utterance of L in the real world, the intended exhaus-
tive model contains the actual utterance itself. Since linguists cannot know how
often an utterance of a concrete token in L did occur and will occur in the world,
exhaustive models are a class of models. For T2 it does not matter how often the
token utterance Elon is going to Mars is encountered at a concrete place and time
in the world, because among the class of exhaustive models of English there is
one with the correct number of occurrences for this utterance and all other ac-
tual utterances, and that exhaustive model is the intended one. However, there is
a crucial complication: it is clear that most conceivable well-formed expressions
of any given human language were never produced and never will be. Since, by
construction, an exhaustive model must contain all potential well-formed expres-
sions of a language which obey the principles of grammar, in addition to actual
utterance tokens, the theory of exhaustive models must admit potential tokens in
the intended exhaustive model for those utterances which never occur in the real
world. If token models are already suspicious (or unacceptable) to many linguists,
models comprising non-actual tokens are even more contentious.

T2 is designed in deliberate opposition to the chronologically preceding theory
T1 of Pollard & Sag (1994), the only one which employs feature structures. T1 pro-
poses that a grammar Γ = 〈Σ, 𝜃〉 denotes a set of mathematical representations
of types of linguistic events. The main idea is that the object types abstract away
from individual circumstances of token occurrences, because for T1 a grammar
of a language is assumed not to be concerned with individual linguistic events or
tokens. The object types capture individual linguistic token events in the sense
that an object type conventionally corresponds to “those imaginable linguistic
objects that are actually predicted to be possible ones” (Pollard & Sag 1994: 7) in
the language L that 〈Σ, 𝜃〉 describes. The postulated intuitive correspondence
is not explicated further, but it is expected that a trained linguist will recognize
which object type a linguistic token encountered in the real world corresponds
to. When observing a token expression of English in the world, for example in
a situation in which someone exclaims Elon is going to Mars!, the linguist recog-
nizes the corresponding object type. The informality of the relationship between
the denotation of a grammar (mathematical objects serving as object types) and
the domain of empirically measurable events (utterances of grammatical expres-
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sions of a language) is one of the reasons to reject T1. In addition to the weak
connection between the object types and the domain of empirically accessible
data, object types have been criticized for being ontologically dubious and in any
case superfluous and thus falling victim to Occam’s razor. A theory of meaning
without such an additional ontological postulate is deemed to be stronger.

T1 is implemented by constructing linguistic object types as abstract feature
structures. In first approximation – to be refined presently – these can be thought
of as rooted directed graphs, or, in terms of our previous grammar models, as con-
figurations of objects under a root node. Definition 11 introduced C𝑢I as the set of
components of an object 𝑢 in an interpretation I. The root node of the directed
graph corresponds to the distinguished object 𝑢 in a set C𝑢I . The abstract feature
structures used as mathematical representations of object types, however, are
not graph-like objects, as two distinct graphs could be isomorphic, in violation
of the core idea of proposing unique object types for classes of linguistic events.
Abstract feature structures are therefore defined as (tuples of) sets, representing
each node 𝜈 in the graph as an equivalence class of paths that lead to 𝜈 from
the root node. A labeling function assigns sorts to these abstract nodes in accor-
dance with the feature appropriateness function of the signature, and relations
are basically tuples of abstract nodes. A satisfaction function determines what it
means for a feature structure to satisfy a description, which is then elaborated in
the notion of grammars admitting sets of abstract feature structures. In terms of
the exhaustive models of T2, the abstract feature structures admitted by a gram-
mar Γ can be imagined as a normal form representation with the abstract feature
structures (the linguistic types) serving as the objects 𝑢 in a canonical exhaus-
tive model I of Γ.17 The earlier ontological criticism of T1 amounts to rejecting
the insinuation that linguists consider (abstract) feature structures the subject
of their grammars and affirming that their real interest lies in the description of
languages. Assuming the existence of abstract feature structures is then a super-
fluous detour in the linguistic enterprise.

Meaning theory T3 is positioned against the theory T1 of object types for
classes of theoretically indistinguishable linguistic tokens, and against the the-
ory T2 of perceiving the meaning of a grammar in an intended exhaustive model
populated with actual and non-actual linguistic tokens. With T3, Pollard (1999)
is firmly opposed to token models and sees mathematical idealizations as fun-
damental to grammatical meaning. The concept of non-actual tokens is deemed

17This characterization is slightly simplistic; see Richter (2004: Appendix A, Definition 80) for
details. Abstract feature structures are in fact extended to canonical entities to obtain canonical
interpretations/models/exhaustive models.
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unacceptable and self-contradictory. However, Pollard (1999) also rejects T1’s on-
tological commitment to object types and wants to strengthen the relationship
between the structures in the denotation of a grammar and empirically observ-
able token expressions. According to T3, no two structures in the strong gen-
erative capacity, the collection denoted by a grammar 〈Σ, 𝜃〉 of language L, are
structurally isomorphic, and each utterance token of language L which is judged
grammatical finds a structurally isomorphic counterpart in the grammar’s strong
generative capacity. An occurrence of the question Is Elon really going to Mars?,
just like the occurrence of any other grammatical token of English, must find
a unique structurally isomorphic mathematical idealization in the strong gener-
ative capacity of an adequate grammar of English. With this requirement, T3
tightens the connection between observables and the mathematical model, cut-
ting out the types and establishing a much stricter link between the predictions
of a grammar and the domain of empirical phenomena than the abstract feature
structure models of Pollard & Sag (1994) offer with their appeal to conventional
correspondence.

T3 is spelled out on the basis of models (Definition 18),18 offering three al-
ternative ways of characterizing the strong generative capacity of a grammar.
The structures in Pollard’s models can be understood as pairs of interpretations
I = 〈U, S, A,R〉 and a root node 𝑢 whose set of components (C𝑢I ) constitute I’s
universe U. The objects in C𝑢I are all defined as canonical representations by a
construction employing equivalence classes of attribute paths originating at the
root node: given a grammar Γ, its strong generative capacity is the set of all such
canonical representations whose interpretations are Γ models. By construction,
they are all pairwise non-isomorphic, and with their internal (set-theoretic) struc-
ture, they can be assumed to be structurally isomorphic to grammatical utterance
tokens of a language, in contrast to the abstract feature structures of Pollard &
Sag (1994). The canonical representations in the strong generative capacity can
be abstracted from each exhaustive model.

A central tenet of theories T1 and T3 of the meaning of grammars as sets of
abstract feature structures and as mathematical idealizations in the strong gen-
erative capacity is the one-to-one correspondence either of object types or of
mathematical idealizations to (linguistically indistinguishable groups of) gram-
matical utterances in a language. Richter (2007) investigates the models of exist-
ing HPSG grammars, such as the fragment of English developed in Pollard & Sag
(1994), and notes that T1 and T3 necessarily trigger an unintended one-to-many
relationship between grammatical utterances and structures in the denotation of

18Pollard (1999) is in fact based on Speciate Re-entrant Logic (SRL), King’s precursor of RSRL,
but a straightforward extension to full RSRL is provided in Richter (2004).
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typical HPSG grammars: one token utterance leads to more than one structure
in the grammar denotation. The main reason is that, in both theories, each struc-
ture which corresponds to a grammatical utterance entails the presence of a large
number of further structures. For the strong generative capacity, the additional
structures come from the substructural nodes in the mathematical idealization of
an utterance which, by design, must in turn function as root nodes of admissible
structures. But these additional structures are not mathematical idealizations of
empirically observable grammatical utterances. In fact, many of the structures
present in the strong generative capacity do not correspond to structures which
can occur in grammatical utterances at all.19 While the abstract feature structures
of T1 do not have substructures, the abstract feature structure admission relation
relies on a mechanism with exactly the same effect: admitting the unique type
of Elon must be on his way to Mars entails the existence of many other types,
so-called reducts of the intended type, and these reducts do not have empirical
counterparts in linguistic utterance tokens.

In response to these problems, T4 proposes normal form grammars, schematic
signature and theory extensions applicable to any HPSG grammar. The core
idea behind the canonical grammar extension is to partition the denotation of
grammars into utterances and to guarantee by construction that every connected
configuration of objects in a grammar’s denotation is isomorphic to an utterance
token in a language. For T1 and T3, this extension is insufficient to establish the
intended one-to-one correspondence between observable utterances and object
types or mathematical idealizations, because the structures predicted by T1 and
T3 still generate additional linguistic types or mathematical idealizations corre-
sponding to each feature structure reduct or substructure, respectively. How-
ever, normal form grammars allow the definition of minimal exhaustive mod-
els, because normal form grammars can be shown to have exhaustive models
which contain non-isomorphic connected configurations of objects with the spe-
cial property that each of these configurations corresponds to a grammatical ut-
terance. According to T4, Elon must be on his way to Mars corresponds to exactly
one connected configuration in the minimal exhaustive model of a perfect gram-
mar of English, and so does any other well-formed English utterance. Proposal
T4 is not forced to make any assumptions about the ontological status of the in-
habitants of minimal exhaustive models of normal form grammars, since they do
not have to be defined as a particular kind of mathematical structure (nor is this
option excluded if it is desired).20 T4 shares with T3 the commitment to provid-

19See Richter (2007: Section 4) for extensive discussion and examples.
20The techniques enlisted in the construction of mathematical idealizations in T3 can easily be

adapted to this end.
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ing an isomorphic structure to each grammatical utterance of a given language
rather than just a corresponding linguistic type. With King’s theory T2, it shares
the avoidance of mathematical entities representing linguistic facts.

HPSG is among a small group of grammar formalisms with a very precise out-
line of their formal foundations. This high degree of precision extends up to
different but closely related ways of characterizing the meaning of grammars.
The differences are in part of a very technical nature, but under the technical
surface, they are due to different opinions of what grammars ought to describe.
It is an advantage of HPSG as a grammar framework that all these approaches
are built on the same explicit logical foundations. As a consequence, their re-
lationships can be studied with the rigorous tools of mathematical logic. The
philosophical debate regarding the adequacy of each interpretation of the nature
and purpose of grammars is thus grounded in concrete mathematical structures.
Finally, independent of philosophical arguments and preferences, proposal T1,
enlisting typed feature structures as canonical structures in models, provides a
bridge to the literature on feature logics, connecting linguistic theory to an in-
teresting set of efficient computational methods, pursued in other chapters of
the present handbook (Bender & Emerson 2021, Chapter 25 of this volume). This
connection to computation and the rich literature on feature structures is unaf-
fected by whether feature structure models are deemed adequate for linguistic
theory.
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