Journal article Open Access

Anomaly Detection in Human Behavior using Video Surveillance

Neha Sharma; Pradeep Kumar D,; Rohit Kumar; Shiv Dutt Tripathi


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">video surveillance, anomaly detection, semi-supervised learning, unusual activity, video processing, abnormal behavior.</subfield>
  </datafield>
  <controlfield tag="005">20211026134847.0</controlfield>
  <controlfield tag="001">5599225</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Computer Science and Engineering, Ramaiah Institute of  Technology, Bangalore, India.</subfield>
    <subfield code="a">Pradeep Kumar D,</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Computer Science and Engineering, Ramaiah Institute of  Technology, Bangalore, India.</subfield>
    <subfield code="a">Rohit Kumar</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Computer Science and Engineering, Ramaiah Institute of  Technology, Bangalore, India.</subfield>
    <subfield code="a">Shiv Dutt Tripathi</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Publisher</subfield>
    <subfield code="4">spn</subfield>
    <subfield code="a">Blue Eyes Intelligence Engineering  &amp; Sciences Publication (BEIESP)</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">747140</subfield>
    <subfield code="z">md5:2dc346c851cc3e1d79ae96759ae8d0db</subfield>
    <subfield code="u">https://zenodo.org/record/5599225/files/B3133129219.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2019-12-30</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o">oai:zenodo.org:5599225</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="4">
    <subfield code="c">328-332</subfield>
    <subfield code="n">2</subfield>
    <subfield code="p">International Journal of Engineering and Advanced Technology (IJEAT)</subfield>
    <subfield code="v">9</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Computer Science and Engineering, Ramaiah Institute of  Technology, Bangalore, India.</subfield>
    <subfield code="a">Neha Sharma</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Anomaly Detection in Human Behavior using  Video Surveillance</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2=" ">
    <subfield code="a">ISSN</subfield>
    <subfield code="0">(issn)2249-8958</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2=" ">
    <subfield code="a">Retrieval Number</subfield>
    <subfield code="0">(handle)B3133129219/2019©BEIESP</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Conventional static surveillance has proved to be quite ineffective as the huge number of cameras to keep an eye on most often outstrips the monitor&amp;rsquo;s ability to do so. Furthermore, the amount of focus needed to constantly monitor the surveillance video cameras is often overbearing. The review paper focuses on solving the problem of anomaly detection in video sequence through semi-supervised techniques. Each video is defined as sequence of frames. The model is trained with goal to minimize the reconstruction error which later on is used to detect anomaly in the test sample videos. The model was trained and tested on most commonly used benchmarking dataset&amp;nbsp; Avenue dataset. Experiment results confirm that the model detects anomaly in a video with a reasonably good accuracy in presence of some noise in dataset.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">issn</subfield>
    <subfield code="i">isCitedBy</subfield>
    <subfield code="a">2249-8958</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.35940/ijeat.B3133.129219</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
  </datafield>
</record>
15
17
views
downloads
Views 15
Downloads 17
Data volume 12.7 MB
Unique views 14
Unique downloads 16

Share

Cite as