Presentation Open Access
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="DOI">10.5281/zenodo.5596398</identifier> <creators> <creator> <creatorName>Antoine Petit</creatorName> <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0003-1970-1790</nameIdentifier> <affiliation>University of Copenhagen</affiliation> </creator> </creators> <titles> <title>Spacing and stability of compact systems</title> </titles> <publisher>Zenodo</publisher> <publicationYear>2021</publicationYear> <subjects> <subject>Exoplanets</subject> <subject>Planet dynamics</subject> <subject>Celestial mechanics</subject> </subjects> <dates> <date dateType="Issued">2021-10-25</date> </dates> <language>en</language> <resourceType resourceTypeGeneral="Text">Presentation</resourceType> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/5596398</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.5596397</relatedIdentifier> <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/plato2021</relatedIdentifier> </relatedIdentifiers> <rightsList> <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract"><p>Exoplanet transit surveys have revealed the existence of numerous<br> multi-planetary systems packed close to their stability limit. This feature<br> likely emerges from the formation and dynamical history of the system.<br> Understanding it in detail is thus key to constrain our planet formation<br> scenarios. While the stability limit has been known empirically for decades,<br> no theoretical explanation was proposed yet. I present a mechanism driving<br> the instability of tightly packed system. Based on the chaotic diffusion<br> along the network of three-planet resonances, it reproduces quantitatively<br> the timescale of instability obtained numerically over several order of<br> magnitude in time and planet-to-star mass ratios. I discuss the observational<br> implications of this model, in particular the expected differences between<br> Super-Earths and terrestrial planet systems.</p></description> </descriptions> </resource>
All versions | This version | |
---|---|---|
Views | 61 | 61 |
Downloads | 26 | 26 |
Data volume | 109.1 MB | 109.1 MB |
Unique views | 57 | 57 |
Unique downloads | 23 | 23 |