Presentation Open Access

Spacing and stability of compact systems

Antoine Petit


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.5596398</identifier>
  <creators>
    <creator>
      <creatorName>Antoine Petit</creatorName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0003-1970-1790</nameIdentifier>
      <affiliation>University of Copenhagen</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Spacing and stability of compact systems</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2021</publicationYear>
  <subjects>
    <subject>Exoplanets</subject>
    <subject>Planet dynamics</subject>
    <subject>Celestial mechanics</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2021-10-25</date>
  </dates>
  <language>en</language>
  <resourceType resourceTypeGeneral="Text">Presentation</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/5596398</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.5596397</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/plato2021</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;Exoplanet transit surveys have revealed the existence of numerous&lt;br&gt;
multi-planetary systems packed close to their stability limit. This feature&lt;br&gt;
likely emerges from the formation and dynamical history of the system.&lt;br&gt;
Understanding it in detail is thus key to constrain our planet formation&lt;br&gt;
scenarios. While the stability limit has been known empirically for decades,&lt;br&gt;
no theoretical explanation was proposed yet. I present a mechanism driving&lt;br&gt;
the instability of tightly packed system. Based on the chaotic diffusion&lt;br&gt;
along the network of three-planet resonances, it reproduces quantitatively&lt;br&gt;
the timescale of instability obtained numerically over several order of&lt;br&gt;
magnitude in time and planet-to-star mass ratios. I discuss the observational&lt;br&gt;
implications of this model, in particular the expected differences between&lt;br&gt;
Super-Earths and terrestrial planet systems.&lt;/p&gt;</description>
  </descriptions>
</resource>
61
26
views
downloads
All versions This version
Views 6161
Downloads 2626
Data volume 109.1 MB109.1 MB
Unique views 5757
Unique downloads 2323

Share

Cite as