Journal article Open Access

Smart Home Automation using Hand Gesture Recognition System

Vignesh Selvaraj Nadar; Vaishnavi Shubhra Sinha; Sushila Umesh Ratre


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Arduino, Gesture Recognition, Home Automation, Human Computer Interaction, Machine Learning</subfield>
  </datafield>
  <controlfield tag="005">20211026134841.0</controlfield>
  <controlfield tag="001">5596243</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Student, Department of Computer Science, Amity  University Mumbai, India.</subfield>
    <subfield code="a">Vaishnavi Shubhra Sinha</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Professor, Department of Computer Science, Amity  University Mumbai, India.</subfield>
    <subfield code="a">Sushila Umesh Ratre</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Publisher</subfield>
    <subfield code="4">spn</subfield>
    <subfield code="a">Blue Eyes Intelligence Engineering  &amp; Sciences Publication (BEIESP)</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">426808</subfield>
    <subfield code="z">md5:52839e4474c85e349aa1f26762772c43</subfield>
    <subfield code="u">https://zenodo.org/record/5596243/files/B3055129219.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2019-12-30</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o">oai:zenodo.org:5596243</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="4">
    <subfield code="c">18-21</subfield>
    <subfield code="n">2</subfield>
    <subfield code="p">International Journal of Engineering and Advanced Technology (IJEAT)</subfield>
    <subfield code="v">9</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Student, Department of Computer Science, Amity  University Mumbai, India.</subfield>
    <subfield code="a">Vignesh Selvaraj Nadar</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Smart Home Automation using Hand Gesture Recognition System</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2=" ">
    <subfield code="a">ISSN</subfield>
    <subfield code="0">(issn)2249-8958</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2=" ">
    <subfield code="a">Retrieval Number</subfield>
    <subfield code="0">(handle)B3055129219/2019©BEIESP</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Visual interpretation of hand gestures is a natural method of achieving Human-Computer Interaction (HCI). In this paper, we present an approach to setting up of a smart home where the appliances can be controlled by an implementation of a Hand Gesture Recognition System. More specifically, this recognition system uses Transfer learning, which is a technique of Machine Learning, to successfully distinguish between pre-trained gestures and identify them properly to control the appliances. The gestures are sequentially identified as commands which are used to actuate the appliances. The proof of concept is demonstrated by controlling a set of LEDs that represent the appliances, which are connected to an Arduino Uno Microcontroller, which in turn is connected to the personal computer where the actual gesture recognition is implemented.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">issn</subfield>
    <subfield code="i">isCitedBy</subfield>
    <subfield code="a">2249-8958</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.35940/ijeat.B3055.129219</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
  </datafield>
</record>
38
18
views
downloads
Views 38
Downloads 18
Data volume 7.7 MB
Unique views 38
Unique downloads 18

Share

Cite as