Journal article Open Access

Smart Home Automation using Hand Gesture Recognition System

Vignesh Selvaraj Nadar; Vaishnavi Shubhra Sinha; Sushila Umesh Ratre


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://zenodo.org/record/5596243</identifier>
  <creators>
    <creator>
      <creatorName>Vignesh Selvaraj Nadar</creatorName>
      <affiliation>Student, Department of Computer Science, Amity  University Mumbai, India.</affiliation>
    </creator>
    <creator>
      <creatorName>Vaishnavi Shubhra Sinha</creatorName>
      <affiliation>Student, Department of Computer Science, Amity  University Mumbai, India.</affiliation>
    </creator>
    <creator>
      <creatorName>Sushila Umesh Ratre</creatorName>
      <affiliation>Professor, Department of Computer Science, Amity  University Mumbai, India.</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Smart Home Automation using Hand Gesture Recognition System</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2019</publicationYear>
  <subjects>
    <subject>Arduino, Gesture Recognition, Home Automation, Human Computer Interaction, Machine Learning</subject>
    <subject subjectScheme="issn">2249-8958</subject>
    <subject subjectScheme="handle">B3055129219/2019©BEIESP</subject>
  </subjects>
  <contributors>
    <contributor contributorType="Sponsor">
      <contributorName>Blue Eyes Intelligence Engineering  &amp; Sciences Publication (BEIESP)</contributorName>
      <affiliation>Publisher</affiliation>
    </contributor>
  </contributors>
  <dates>
    <date dateType="Issued">2019-12-30</date>
  </dates>
  <language>en</language>
  <resourceType resourceTypeGeneral="JournalArticle"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/5596243</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="ISSN" relationType="IsCitedBy" resourceTypeGeneral="JournalArticle">2249-8958</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.35940/ijeat.B3055.129219</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;Visual interpretation of hand gestures is a natural method of achieving Human-Computer Interaction (HCI). In this paper, we present an approach to setting up of a smart home where the appliances can be controlled by an implementation of a Hand Gesture Recognition System. More specifically, this recognition system uses Transfer learning, which is a technique of Machine Learning, to successfully distinguish between pre-trained gestures and identify them properly to control the appliances. The gestures are sequentially identified as commands which are used to actuate the appliances. The proof of concept is demonstrated by controlling a set of LEDs that represent the appliances, which are connected to an Arduino Uno Microcontroller, which in turn is connected to the personal computer where the actual gesture recognition is implemented.&lt;/p&gt;</description>
  </descriptions>
</resource>
38
18
views
downloads
Views 38
Downloads 18
Data volume 7.7 MB
Unique views 38
Unique downloads 18

Share

Cite as