
International Journal of Engineering and Advanced Technology (IJEAT) 

ISSN: 2249 – 8958, Volume-9 Issue-3, February 2020 

 

4405 

Published By: 

Blue Eyes Intelligence Engineering 
& Sciences Publication  

Retrieval Number: C6473029320 /2020©BEIESP 

DOI: 10.35940/ijeat.C6473.029320 

Mathematical Modeling of Polymer Loading 

Process in Extruders 

K. Zelensky, Ev. Nastenko, V. Bolhovitin, O. Pavlov 

Abstract: Based on the state of the problem related to high-

quality and reliable insulation coating of high-voltage cables, the 

problems of mathematical modeling of pro-cesses in the loading 

zone and the delay of the polymer mixture in a single-screw 

extruder are formulated, which is crucial in terms of providing a 

high-quality insulation coating. An iterative numerical-analytical 

method for solving the corresponding nonlinear boundary value 

problems is proposed, based on the use of finite integral 

transformations in the spatial and temporal domains and their 

implementation. 
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I.INTRODUCTION 

Due to the high productivity of the extruders, their 

substantial value, and the high cost of polymeric materials, 

experimental studies on equipment upgrades and 

technological regimes lead to costly materials and time 

costs. This leads to the development of theoretical 

foundations of the processes under study. One of the main 

tools that helps to get the results you need and allows you to 

minimize expensive field tests is mathematical modeling. 

Although the vast majority of theoretical work on the 

description of processes of heat transfer is based on the 

classical Navier - Stokes equations [1,2,3], at the same time, 

existing approaches to the modification of the processes of 

flow, heat exchange and phase transformation of polymers 

in channels of extrusion equipment [4] do not provide a 

qualitative and quantitative analysis of the processes, since 

the vast majority of them are formulated either in one-

dimensional formulation [5-11] or formulated in three-

dimensional formulation, but the corresponding boundary-

value problems are not given or solved communications link 

to know `` standard '' packages numerical solution, which by 

their nature are not designed to solve nonlinear models. In 

addition, in our view, when setting these problems, the 

boundary conditions inherent in such a complex physical 

phenomenon are incorrectly formulated [4]. In addition, a 

number of problems have not been solved in the theory of 

plastic extrusion. As a rule, the rheological states of the 

polymer mixtures are not taken into account, the effect of 

the heat transfer processes in the auger on the processes of 

plastic extrusion are practically not considered. 
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Addressing these issues is important in terms of improving 

product quality, improving work efficiency when designing 

and upgrading extrusion equipment, and improving 

technological modes. 

II.METHODOLOGY AND MATERIALS 

II.1 Object description 

In Fig. 1 [5], provides a diagram of an extruder for coating 

plastic wires 

.

 
Fig 1. Schematic of single screw extruder 

 

The object of this study is the loading zone and the delay 

zone in which the polymer mixture is heated to a 

temperature close to the melting point of the polymer. 

The main source of heating of the body of the extruder is 

induction heating. The density of internal heat sources is the 

electromagnetic energy released per unit time per unit 

volume. Due to the surface effect, the distribution of internal 

heat sources is significantly heterogeneous and depends on 

the electrophysical properties of the load, which change 

during heating.  

The whole process of heating is divided into intervals, in 

each of which the loading properties are assumed 

unchanged.  
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II.2 Heating the extruder housing 

The distribution of the temperature field of the body kT  is 

described by the equation of thermal conductivity, which in 

the cylindrical coordinate system has the form  
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where kkkk ca  /(=  is the coefficient of thermal 

conductivity; kkk c  ,,  is the coefficient of thermal 

conductivity (W/ (m C ), the specific heat and density of 

the body material, respectively ; ),( zrg  is the function of 

the density distribution of the internal energy sources in the 

material, W / m 
3

. Given 

that the depth of penetration 
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of electromagnetic energy from the inductor is small, 

1 , we assume that it acts on the outer surface of the 

housing 
4= rr . Then the boundary conditions for the 

housing:  
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where 
kkh  /=1

; 
k  is the heat transfer coefficient of 

the enclosure into the environment. For the contact surface 

of a steel pipe with air 9=k W/(m
2

C ).  

Substitution kk TTT 0=   reduces the problem to the 

equation  
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The values of thermophysical parameters for the housing 

(steel) at temperature KT 300=  are equal to: 7845=   

kg/m
3

, 0,461=Vc   kW/ (kg )Kc  , =  58, 

K1/10.5= . Find the temperature field of the body of 

the extruder on the first section of heating (the area of 

polymer loading).  

Z  native conversion functions:  
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Applying to (5) the integral transformation on the variable 

r  leads to the search for the solution of the Bessel equation  
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with homogeneous boundary conditions  
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Given (6) and (4), we have an expression for the 

temperature field of the auger housing. 
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 where ))(/(= 22

knvknk c   . 

In Fig. 2 results of simulation of auger housing temperature 

field. 

 
Fig.2 Screw housing temperature field at fixed t   

 

II.3 Simulation of Polymer Temperature Field in 

Loading Area 

When formulating the boundary value of the process of 

heating the dry polyethylene mixture at the loading area, it is 

necessary to take into account the presence of a rotational 

motion of the screw at a constant speed snV  with cutting at 

an angle  . The heat transfer equation looks like:  
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For polyethylene, 
p

vc  is essentially dependent on the 

heating temperature [4]. The heat capacity coefficient  is 

approximated by the dependence  
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At the boundary of the housing and the auger, the condition 

of equality of heat flows must be fulfilled  
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Given (7) we have a boundary condition at 3= rr  for the 

screw temperature:  
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The temperature field of the polymer mixture in the loading 

zone is described by the boundary value problem (8) - (13). 

Given the dependence of the coefficient of thermal capacity 

of the polymer on the temperature vpc , the thermal 

conductivity equation for the polymer in the loading zone 

can be written as:  
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,][=),,(
p2

p21p11p
t

T
TcTctzrNT




  (14) 

where 011111 /= ccc  , 012121 /= ccc  . 

Since the equation (1) is nonlinear, we will look for an 

iteration scheme. Solution of the linear part of the equation  
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The difference is the condition at the boundary 3= rr , 

which gives the expression for the temperature field at that 

boundary (11). When applying integral transforms for 

spatial variables to a boundary-value problem (14) - (16), 

we take into account (11) the following condition:  
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 Using this expression as a boundary condition for solving 

the problem of heat transfer (14), (12), (13) and (17) results 

in operations with NNM   components of appearance 
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them again. So let's simplify this expression.  
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The algorithm behind this simplification is outlined in the 

section. The error that naturally arises from such 

simplification is offset by an iterative process when solving 

a nonlinear problem. Write the heat transfer equation in the 

screw (the temperature field of the polymer mixture) after 

applying the transformations on the spatial variables rz, :  
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In the space of originals we have  
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This expression takes into account approximate equality  
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After obtaining the solution of the equation in the form (21), 

taking into account (22), we will look for the solution of the 

equation (14) according to the iterative scheme. Recall that  
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The general scheme for solving the nonlinear equation is 
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We replace the expression (20) with (15).  
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Applying integral transforms to (14) on spatial variables 

leads to the following equation:  
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Further, given the temperature field of the polymer mixture, 

the index p  is omitted to simplify the calculations. Integral 
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Recall that due to the notation introduced, the coefficients 

21,dd , is , 1,5=i , depend on the eigenvalues of the 

spatial variables. Apply to the Laplace transform equation 

over time (the initial condition is zero). We have:  
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The expression in square brackets ((20)) omits (for clarity) 

the sums of the indices 321 ,, nnn  and 321 ,, kkk . For one `` 

point'', the inverse Laplace transform to ((20)) gives the 

expression:  
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0

(0)(1) teE
t

eEtTtT
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i

nk
nknk
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 (21) 

Summation by the indices of the right-hand side of the 

equation (31) will result in such an expression with respect 

to the operator p , which makes it impossible for its 

practical implementation by means of computer engineering. 

For the solution in the second approximation we have to 

substitute in (29) which will result in the production of 

expression expressions (31), etc., that is, the increase of 

constituents relative to elementary chains in geometric 

progression.  

This leads to the development of algorithms that prevent this 

growth. The accumulated errors can be compensated by 

additional iterations in the corresponding algorithm.  

So, let's go back to the equation (31) and consider the 

expression in square brackets, taking into account 

thsummation of the index 2k  
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In turn, the resulting expression can be approximated by the 

same pattern  
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Given that the eigenvalues of 
2  increase quite rapidly with 

increasing N  and M , we can restrict ourselves to 

4== MN . An algorithm for such simplified fractional 

expressions is given in the section that results in:  
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This expression corresponds to the original (in the space of 

integral transformations by spatial variables)  
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Then the solution in the first approximation will take the 

form 
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 Further approximations are implemented in the same way:  
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In Fig. 3,4 graphs of the temperature field of the polymer in 

the loading zone at the first and third iteration are shown. 

Third approximation error is 0.05 % 

 
Fig 3 Screw housing temperature field at fixed t  - first 

iteration 

 

 
Fig.4 Screw housing temperature for fixed t  - third 

iteration 

 

II.4 Delayed Processes 

After heating the polyethylene mixture in the loading zone 

to the melting point in the delay zone, a boundary layer of 

polymer melt is formed. In this zone, the mixture is 

transitioned from solid to liquid in the boundary region to 

form a thin film of molten polymer.  

This problem is mathematically described by two-phase 

equations of thermal conductivity in the solid and liquid 

phases, known as the two-phase Stefan type problem. 

The peculiarity of this problem is the abrupt change in the 

coefficient of heat capacity at the boundary of the transition 

of the mixture from solid to liquid.  

Many problems are devoted to solving problems of the 

Stefan type. They are all based on the use of difference 

schemes in mathematical physics and are usually limited to 

solving one-dimensional relative spatial variables by chance.  

Consider the problem of transitioning a mixture from a solid 

state to a liquid with the formation of a thin melt film in the 

boundary zone of the screw - housing. 

From the point of view of computational algorithms, the fact 

that Stefan's problem permits the formulation under which 

conditions at the phase transition boundary are included in 

the thermal conductivity equation is important [17]. This 

formulation is called enthalpy. 

The domain )(t  of the liquid phase, where the 

temperature exceeds the phase transition temperature 
*T , is 

}>),,(,),,{(=)( *TzyxTinzyxt 
. Accordingly, 

the domain }<),,(,),,{(=)( *TzyxTzyxt 
. 

We use the same notation for thermophysical values in each 

phase. 

In the solid phase, we have the equation of thermal 

conductivity  

,),,(,)grad(div= 


 



QzyxfTk

t

T
c   (24) 

where }<<,0),,(|),,,{(= maxttzyxtzyxQ   . 

Given the convective transfer in the liquid phase,  













 


 Tv
t

T
c grad  

.),,(,)grad(div=   QzyxfTk  (25) 

.),,(0,=][ SzyxT   (26) 

where ][  denotes a jump in the boundary of the S  phase 

transition. 

The phase transition is accompanied by the release / 

absorption of a certain amount of heat. Therefore, the 

thermal flux at the boundary of the phase transition is 

discontinuous and is determined by the magnitude  

.),,(,= SzyxLV
n

T
n 












 (27) 

Here L  is the enthalpy of the phase transition, nV  the 

velocity of the phase transition boundary at normal. 

At the boundary of the phase transition conditions of the 

first kind are fulfilled:  

).(),,(,=),,,( * tSzyxTtzyxT   (28) 

Conditions (37)-(39) -- Stefan conditions, and the 

corresponding problem for the equations (35), (36) is called 

the Stefan problem. From the point of view of constructing 

efficient algorithms, it is important that the Stefan problem 

admits a generalized formulation under which the conditions 

(37)-(39) are included in the thermal conductivity equation 

itself.  

.),,(,)grad(div=grad QzyxfTkTv
t

T
c 













  (29) 

Near the boundary of the phase transition, we introduce a 

local orthogonal coordinate system ),,( zyx  , whose 

metric coefficients are equal to one. In these new 

coordinates, the surface   -function S  is 

)(= 0xxS
 , where the equation 0= xx   defines the 

limit S . Similarly, for the speed of free boundary motion 

we have dtxdVn /=  . The Stefan condition ( ref stef.05) 

corresponds to the fact that in the new coordinates 

),,,(= tzyxTT  , 
*=),,, TtzyxT  .  

.)(=)(= *

0
dt

dT
TT

dt

xd
xxVnS 


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 (30) 
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Substituting ( ref stef.10) into ( ref stef.09) gives the desired 

equation  














 Tv

t

T
TTLc grad)]([ *  

.),,(,)grad(div= QzyxfTk   (31) 

Considering the phase transition heat is equivalent to setting 

the effective heat capacity:  

).(
1

= *TTLccef  


 

,)grad(div=grad Vef qTkTv
t

T
c 













  (32) 

Vq  is the bulk density of internal sources. 

In [18] proposes an approach based on the implementation 

of the internal energy density function )(T . The 

disadvantage of this approach is the lack of a convective 

component in the proposed thermal conduction equation 

(see (43), which must be present in the equation for the 

liquid phase of the polymer state. The disadvantage of this 

approach is the lack of a convective component in the 

proposed thermal conductivity equation (see (43), which 

must be present in the equation for the liquid phase of the 

polymer state.  

We formulate the problem of polymer melt motion in the 

boundary region of the auger - auger housing, taking into 

account the convective component. To the equation (43) 

must be added the equation of motion of the melt film. Since 

the melt film is thin, it is sufficient to consider the velocity 

distribution of the fluid along the axial coordinate z . Then 

we will have:  
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TTLc V grad)](0[ *  

.)grad(div= VqTk   (34) 

Initial conditions:  

,0).(=,0)(),(=,0)( zTzTzVzv pz  (35) 

 Boundary conditions:  

),(=)(),(=)( 1=1= tTtTtVtv pzzzzz  

.=),,=( ,,ml3 tzTtzrrT  (36) 

 The iterative procedure for solving the given system of 

equations is as follows.  

1. First, we obtain the solution of the linearized equation 

corresponding to  
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
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


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 2. The solution obtained for the velocity ),((0) tzv  to solve 

the equation of the linear part of the equation with respect to 

temperature  
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(0)
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.)grad(div= (0)

VqTk   (38) 

3. Find the solution of the equation taking into account the 

dependence of the heat content coefficient on the melt 

temperature )(0 *TTLc V   - ),((1) tzT .  

4. Determine the expression for pressure using 

),(= (1) tzRTp  .  

5. We obtain the solution of the equation (44) in the first 

approximation, that is, we solve the equation  

),(= (1)(0)

2

2(1)

TvN
z

v

z

p

t

v
v




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


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


  (39) 

 .),(=),(
(1)(0)

(0)(1)(0)

z

T
R
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v
tzvTvNv









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6. Repeat steps 2--5 until  >),(),( )(1)(  tzTtzT mm
 

with the indexes 0 and 1 replaced by m  and 1m .  

Since the iterative procedure for solving nonlinear equations 

is outlined in the previous sections, we do not give it in this 

section. 

III.RESULTS AND DISCUSSION 

Mathematical modeling of the processes of heating of the 

screw housing and the polymer mixture in the loading zone 

and the delay zone is performed. 

The solutions of the nonlinear boundary value problems of 

heat transfer in the loading zone and the delay are obtained, 

taking into account the nonlinear properties of the 

coefficient of heat capacity and convective transfer of speed 

in the delay zone. An algorithm for solving the problem of 

moving boundaries of the solid and liquid phases of a 

polymer is proposed.  

IV.CONCUSION 

The problem solved,in our opinion, is essential for solving 

the problem of optimal heating of the polymer mixture in 

terms of providing high-quality insulating coating of the 

cable to ultra-high voltages. 
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