Journal article Open Access
Manisha Talware; Sanjay Koli
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="URL">https://zenodo.org/record/5595720</identifier> <creators> <creator> <creatorName>Manisha Talware</creatorName> <affiliation>Research Scholar at G.H. Raisoni College of Engineering and Management, Pune, India</affiliation> </creator> <creator> <creatorName>Sanjay Koli</creatorName> <affiliation>Professor, D. Y. Patil Inst. of Info. Technology and Research Supervisor at G.H. Raisoni College of Engineering and Management, Pune, Indi</affiliation> </creator> </creators> <titles> <title>Video-Based Person Re-Identification: Methods, Datasets, and Deep Learning</title> </titles> <publisher>Zenodo</publisher> <publicationYear>2020</publicationYear> <subjects> <subject>Person Re-Identification, Camera Network, Video Analytics, Deep Learning, pedestrian detection.</subject> <subject subjectScheme="issn">2249-8958</subject> <subject subjectScheme="handle">C6524029320 /2020©BEIESP</subject> </subjects> <contributors> <contributor contributorType="Sponsor"> <contributorName>Blue Eyes Intelligence Engineering & Sciences Publication (BEIESP)</contributorName> <affiliation>Publisher</affiliation> </contributor> </contributors> <dates> <date dateType="Issued">2020-02-29</date> </dates> <language>en</language> <resourceType resourceTypeGeneral="JournalArticle"/> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/5595720</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="ISSN" relationType="IsCitedBy" resourceTypeGeneral="JournalArticle">2249-8958</relatedIdentifier> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.35940/ijeat.C6524.029320</relatedIdentifier> </relatedIdentifiers> <rightsList> <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract"><p>Video Analytics applications like security and surveillance face a critical problem of person re-identification abbreviated as re-ID. The last decade witnessed the emergence of large-scale datasets and deep learning methods to use these huge data volumes. Most current re-ID methods are classified into either image-based or video-based re-ID. Matching persons across multiple camera views have attracted lots of recent research attention. Feature representation and metric learning are major issues for person re-identification. The focus of re-ID work is now shifting towards developing end-to-end re-Id and tracking systems for practical use with dynamic datasets. Most previous works contributed to the significant progress of person re-identification on still images using image retrieval models. This survey considers the more informative and challenging video-based person re-ID problem, pedestrian re-ID in particular. Publicly available datasets and codes are listed as a part of this work. Current trends which include open re-identification systems, use of discriminative features and deep learning is marching towards new applications in security and surveillance, typically for tracking.</p></description> </descriptions> </resource>
Views | 36 |
Downloads | 15 |
Data volume | 11.9 MB |
Unique views | 36 |
Unique downloads | 15 |