Journal article Open Access
Manisha Talware; Sanjay Koli
<?xml version='1.0' encoding='utf-8'?> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:adms="http://www.w3.org/ns/adms#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dct="http://purl.org/dc/terms/" xmlns:dctype="http://purl.org/dc/dcmitype/" xmlns:dcat="http://www.w3.org/ns/dcat#" xmlns:duv="http://www.w3.org/ns/duv#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:frapo="http://purl.org/cerif/frapo/" xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#" xmlns:gsp="http://www.opengis.net/ont/geosparql#" xmlns:locn="http://www.w3.org/ns/locn#" xmlns:org="http://www.w3.org/ns/org#" xmlns:owl="http://www.w3.org/2002/07/owl#" xmlns:prov="http://www.w3.org/ns/prov#" xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" xmlns:schema="http://schema.org/" xmlns:skos="http://www.w3.org/2004/02/skos/core#" xmlns:vcard="http://www.w3.org/2006/vcard/ns#" xmlns:wdrs="http://www.w3.org/2007/05/powder-s#"> <rdf:Description rdf:about="https://zenodo.org/record/5595720"> <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://zenodo.org/record/5595720</dct:identifier> <foaf:page rdf:resource="https://zenodo.org/record/5595720"/> <dct:creator> <rdf:Description> <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/> <foaf:name>Manisha Talware</foaf:name> <org:memberOf> <foaf:Organization> <foaf:name>Research Scholar at G.H. Raisoni College of Engineering and Management, Pune, India</foaf:name> </foaf:Organization> </org:memberOf> </rdf:Description> </dct:creator> <dct:creator> <rdf:Description> <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/> <foaf:name>Sanjay Koli</foaf:name> <org:memberOf> <foaf:Organization> <foaf:name>Professor, D. Y. Patil Inst. of Info. Technology and Research Supervisor at G.H. Raisoni College of Engineering and Management, Pune, Indi</foaf:name> </foaf:Organization> </org:memberOf> </rdf:Description> </dct:creator> <dct:title>Video-Based Person Re-Identification: Methods, Datasets, and Deep Learning</dct:title> <dct:publisher> <foaf:Agent> <foaf:name>Zenodo</foaf:name> </foaf:Agent> </dct:publisher> <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#gYear">2020</dct:issued> <dcat:keyword>Person Re-Identification, Camera Network, Video Analytics, Deep Learning, pedestrian detection.</dcat:keyword> <dct:subject> <skos:Concept> <skos:prefLabel>2249-8958</skos:prefLabel> <skos:inScheme> <skos:ConceptScheme> <dct:title>issn</dct:title> </skos:ConceptScheme> </skos:inScheme> </skos:Concept> </dct:subject> <dct:subject> <skos:Concept> <skos:prefLabel>C6524029320 /2020©BEIESP</skos:prefLabel> <skos:inScheme> <skos:ConceptScheme> <dct:title>handle</dct:title> </skos:ConceptScheme> </skos:inScheme> </skos:Concept> </dct:subject> <schema:sponsor> <rdf:Description> <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/> <foaf:name>Blue Eyes Intelligence Engineering & Sciences Publication (BEIESP)</foaf:name> <org:memberOf> <foaf:Organization> <foaf:name>Publisher</foaf:name> </foaf:Organization> </org:memberOf> </rdf:Description> </schema:sponsor> <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#date">2020-02-29</dct:issued> <dct:language rdf:resource="http://publications.europa.eu/resource/authority/language/ENG"/> <owl:sameAs rdf:resource="https://zenodo.org/record/5595720"/> <adms:identifier> <adms:Identifier> <skos:notation rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://zenodo.org/record/5595720</skos:notation> <adms:schemeAgency>url</adms:schemeAgency> </adms:Identifier> </adms:identifier> <dct:relation rdf:resource="http://issn.org/resource/ISSN/2249-8958"/> <owl:sameAs rdf:resource="https://doi.org/10.35940/ijeat.C6524.029320"/> <dct:description><p>Video Analytics applications like security and surveillance face a critical problem of person re-identification abbreviated as re-ID. The last decade witnessed the emergence of large-scale datasets and deep learning methods to use these huge data volumes. Most current re-ID methods are classified into either image-based or video-based re-ID. Matching persons across multiple camera views have attracted lots of recent research attention. Feature representation and metric learning are major issues for person re-identification. The focus of re-ID work is now shifting towards developing end-to-end re-Id and tracking systems for practical use with dynamic datasets. Most previous works contributed to the significant progress of person re-identification on still images using image retrieval models. This survey considers the more informative and challenging video-based person re-ID problem, pedestrian re-ID in particular. Publicly available datasets and codes are listed as a part of this work. Current trends which include open re-identification systems, use of discriminative features and deep learning is marching towards new applications in security and surveillance, typically for tracking.</p></dct:description> <dct:accessRights rdf:resource="http://publications.europa.eu/resource/authority/access-right/PUBLIC"/> <dct:accessRights> <dct:RightsStatement rdf:about="info:eu-repo/semantics/openAccess"> <rdfs:label>Open Access</rdfs:label> </dct:RightsStatement> </dct:accessRights> <dct:license rdf:resource="https://creativecommons.org/licenses/by/4.0/legalcode"/> <dcat:distribution> <dcat:Distribution> <dcat:accessURL rdf:resource="https://doi.org/10.35940/ijeat.C6524.029320"/> <dcat:byteSize>790903</dcat:byteSize> <dcat:downloadURL rdf:resource="https://zenodo.org/record/5595720/files/C6524029320.pdf"/> <dcat:mediaType>application/pdf</dcat:mediaType> </dcat:Distribution> </dcat:distribution> </rdf:Description> </rdf:RDF>
Views | 36 |
Downloads | 15 |
Data volume | 11.9 MB |
Unique views | 36 |
Unique downloads | 15 |