Journal article Open Access

A Consumer-Friendly Machine Learning Based Mechanism to Recognize the Quality of Commercially Available Fruits

Deepti C.; Arjit Jindal; Prudhvi Reddy; Amrutha D.


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">CNN based Approach, Fruit Ripening, Image Processing, Machine Learning.</subfield>
  </datafield>
  <controlfield tag="005">20211023134844.0</controlfield>
  <controlfield tag="001">5594209</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">PESIT Bangalore South Campus, Bengaluru, India.</subfield>
    <subfield code="a">Arjit Jindal</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">PESIT Bangalore South Campus, Bengaluru, India.</subfield>
    <subfield code="a">Prudhvi Reddy</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">PESIT Bangalore South Campus, Bengaluru, India.</subfield>
    <subfield code="a">Amrutha D.</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Publisher</subfield>
    <subfield code="4">spn</subfield>
    <subfield code="a">Blue Eyes Intelligence Engineering  &amp; Sciences Publication(BEIESP)</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">651243</subfield>
    <subfield code="z">md5:a10b01468ca87a087b4017cfffbb57b6</subfield>
    <subfield code="u">https://zenodo.org/record/5594209/files/C6270029320.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2020-02-29</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o">oai:zenodo.org:5594209</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="4">
    <subfield code="c">3833-3839</subfield>
    <subfield code="n">3</subfield>
    <subfield code="p">International Journal of Engineering and Advanced Technology (IJEAT)</subfield>
    <subfield code="v">9</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">PES University Electronic City Campus, Bengaluru, India.</subfield>
    <subfield code="a">Deepti C.</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">A Consumer-Friendly Machine Learning Based  Mechanism to Recognize the Quality of  Commercially Available Fruits</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2=" ">
    <subfield code="a">ISSN</subfield>
    <subfield code="0">(issn)2249-8958</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2=" ">
    <subfield code="a">Retrieval Number</subfield>
    <subfield code="0">(handle)C6270029320/2020©BEIESP</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Cultivators and sellers of many high-in-demand fruits traditionally preferred natural ripening after picking. Greed of hefty profits has motivated some of them to artificially hasten the ripening process at the cost of people&amp;rsquo;s health. Artificial ripening processes tend to degrade the entire quality of the fruit. The focus of this work is to describe a nondestructive method to detect artificial fruit ripening. To aid the detection, the proposed solution utilizes image processing and machine learning techniques to find the artificially ripened fruits. An input fruit image is selected as the test image. The next stage involves comparison of the features (histogram values) of the test image with the image of a naturally ripened one. A smartphone runs an android application to identify artificially ripened fruits. This work specifically concentrates on the commonly preferred Indian Mango and Indian Apple. The developed mechanism has an efficiency of 89-94% in correct detection.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">issn</subfield>
    <subfield code="i">isCitedBy</subfield>
    <subfield code="a">2249-8958</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.35940/ijeat.C6270.029320</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
  </datafield>
</record>
37
13
views
downloads
Views 37
Downloads 13
Data volume 8.5 MB
Unique views 36
Unique downloads 13

Share

Cite as