Journal article Open Access

Image Fusion using Non Subsampled Contourlet Transform in Medical Field

Jampani Ravi,; M. Gowri Sri Durga; Y. D. R. Ch. Kartheek; MD. Shabeena Begum; T. Raju; T. V. Syamala Raju


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://zenodo.org/record/5594206</identifier>
  <creators>
    <creator>
      <creatorName>Jampani Ravi,</creatorName>
      <familyName>Jampani Ravi</familyName>
    </creator>
    <creator>
      <creatorName>M. Gowri Sri Durga</creatorName>
      <affiliation>Assistant Professor, Department of ECE, SRKR  Engineering College, Bhimavaram, India</affiliation>
    </creator>
    <creator>
      <creatorName>Y. D. R. Ch. Kartheek</creatorName>
      <affiliation>Student, Department of ECE, SRKR Engineering  College, Bhimavaram, India.</affiliation>
    </creator>
    <creator>
      <creatorName>MD. Shabeena Begum</creatorName>
      <affiliation>Student, Department of ECE, SRKR Engineering College, Bhimavaram, India</affiliation>
    </creator>
    <creator>
      <creatorName>T. Raju</creatorName>
      <affiliation>Department of ECE, SRKR Engineering College, Bhimavaram,</affiliation>
    </creator>
    <creator>
      <creatorName>T. V. Syamala  Raju</creatorName>
      <affiliation>Assistant Professor, Department of ECE, SRKR  Engineering College, Bhimavaram, India</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Image Fusion using Non Subsampled Contourlet  Transform in Medical Field</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2020</publicationYear>
  <subjects>
    <subject>Image fusion, NSCT, SPARSE, SENSOR.</subject>
    <subject subjectScheme="issn">2249-8958</subject>
    <subject subjectScheme="handle">C6268029320/2020©BEIESP</subject>
  </subjects>
  <contributors>
    <contributor contributorType="Sponsor">
      <contributorName>Blue Eyes Intelligence Engineering  &amp; Sciences Publication(BEIESP)</contributorName>
      <affiliation>Publisher</affiliation>
    </contributor>
  </contributors>
  <dates>
    <date dateType="Issued">2020-02-29</date>
  </dates>
  <language>en</language>
  <resourceType resourceTypeGeneral="JournalArticle"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/5594206</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="ISSN" relationType="IsCitedBy" resourceTypeGeneral="JournalArticle">2249-8958</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.35940/ijeat.C6268.029320</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;Image fusion is a powerful method and developing field in the area of image processing. The image fusion is a type of methodology that combines the two or more images into single more informative image. Image fusion is the process of assimilation of numerous input images into a new single fused image with highly informative than the input image. There are various image fusion transform techniques are proposed. Out of that techniques a Non-subsampled Counterlet transform includes shift invariant property, highly directionality, reduced the cost and more efficient information as compared to previous techniques such as wavelet transform(WT), DWT, LWT, MWT, CWT, Curvelet transform, Contourlet transform. In NSCT, we decompose the images into low frequency and high frequency using sparse representation and absolute-maximum rule respectively. The DGSR algorithm is used for the better performance of SR-based approach. Finally, to reconstruct the image we use inverse NSCT and output is fused image.&lt;/p&gt;</description>
  </descriptions>
</resource>
40
15
views
downloads
Views 40
Downloads 15
Data volume 11.1 MB
Unique views 37
Unique downloads 15

Share

Cite as