Journal article Open Access

Transfer Learning Based MA Detection (TL-MAD)

M. Kalpana Devi; M. Mary Shanthi Ran


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Deep learning (DL), Diabetic Retinopathy (DR), Micro aneurysm (MA),Convolutional Neural Networks(CNN)</subfield>
  </datafield>
  <controlfield tag="005">20211023134842.0</controlfield>
  <controlfield tag="001">5593978</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Assistant Professor, Department of  Computer Science and Application, Gandhigram Rural Institute (Deemed to  be University), Gandhigram, India</subfield>
    <subfield code="a">M. Mary Shanthi Ran</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Publisher</subfield>
    <subfield code="4">spn</subfield>
    <subfield code="a">Blue Eyes Intelligence Engineering  &amp; Sciences Publication(BEIESP)</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">353232</subfield>
    <subfield code="z">md5:5ed013b099bb19d5726797d83e04d578</subfield>
    <subfield code="u">https://zenodo.org/record/5593978/files/C5449029320.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2020-02-29</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o">oai:zenodo.org:5593978</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="4">
    <subfield code="c">3653-3656</subfield>
    <subfield code="n">3</subfield>
    <subfield code="p">International Journal of Engineering and Advanced Technology (IJEAT)</subfield>
    <subfield code="v">9</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Ph. D., Research Scholar ,Department of Computer  Science and Application, Gandhigram Rural Institute(Deemed to be  University), Gandhigram, India</subfield>
    <subfield code="a">M. Kalpana Devi</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Transfer Learning Based MA Detection  (TL-MAD)</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2=" ">
    <subfield code="a">ISSN</subfield>
    <subfield code="0">(issn)2249-8958</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2=" ">
    <subfield code="a">Retrieval Number</subfield>
    <subfield code="0">(handle)C5449029320/2020©BEIESP</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Diabetic Retinopathy (DR) is a microvascular complication of Diabetes that can lead to blindness if it is severe. Micro aneurysm (MA) is the initial and main symptom of DR. In this paper, an automatic detection of DR from retinal fundus images of publicly available dataset has been proposed using transfer learning with pre-trained model VGG16 based on Convolutional Neural Network (CNN). Our method achieves improvement in accuracy for MA detection using retinal fundus images in prediction of Diabetic Retinopathy.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">issn</subfield>
    <subfield code="i">isCitedBy</subfield>
    <subfield code="a">2249-8958</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.35940/ijeat.C5449.029320</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
  </datafield>
</record>
39
13
views
downloads
Views 39
Downloads 13
Data volume 4.6 MB
Unique views 36
Unique downloads 13

Share

Cite as