Journal article Open Access

Transfer Learning Based MA Detection (TL-MAD)

M. Kalpana Devi; M. Mary Shanthi Ran


Dublin Core Export

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
  <dc:contributor>Blue Eyes Intelligence Engineering  &amp; Sciences Publication(BEIESP)</dc:contributor>
  <dc:creator>M. Kalpana Devi</dc:creator>
  <dc:creator>M. Mary Shanthi Ran</dc:creator>
  <dc:date>2020-02-29</dc:date>
  <dc:description>Diabetic Retinopathy (DR) is a microvascular complication of Diabetes that can lead to blindness if it is severe. Micro aneurysm (MA) is the initial and main symptom of DR. In this paper, an automatic detection of DR from retinal fundus images of publicly available dataset has been proposed using transfer learning with pre-trained model VGG16 based on Convolutional Neural Network (CNN). Our method achieves improvement in accuracy for MA detection using retinal fundus images in prediction of Diabetic Retinopathy.</dc:description>
  <dc:identifier>https://zenodo.org/record/5593978</dc:identifier>
  <dc:identifier>10.35940/ijeat.C5449.029320</dc:identifier>
  <dc:identifier>oai:zenodo.org:5593978</dc:identifier>
  <dc:language>eng</dc:language>
  <dc:relation>issn:2249-8958</dc:relation>
  <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
  <dc:rights>https://creativecommons.org/licenses/by/4.0/legalcode</dc:rights>
  <dc:source>International Journal of Engineering and Advanced Technology (IJEAT) 9(3) 3653-3656</dc:source>
  <dc:subject>Deep learning (DL), Diabetic Retinopathy (DR), Micro aneurysm (MA),Convolutional Neural Networks(CNN)</dc:subject>
  <dc:subject>ISSN</dc:subject>
  <dc:subject>Retrieval Number</dc:subject>
  <dc:title>Transfer Learning Based MA Detection  (TL-MAD)</dc:title>
  <dc:type>info:eu-repo/semantics/article</dc:type>
  <dc:type>publication-article</dc:type>
</oai_dc:dc>
38
13
views
downloads
Views 38
Downloads 13
Data volume 4.6 MB
Unique views 35
Unique downloads 13

Share

Cite as