Journal article Open Access

Hybridized Gradient Descent Spectral Graph and Local-global Louvain Based Clustering of Temporal Relational Data

L. Jaya Singh Dhas,; B. Mukunthan; G. Rakesh


DCAT Export

<?xml version='1.0' encoding='utf-8'?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:adms="http://www.w3.org/ns/adms#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dct="http://purl.org/dc/terms/" xmlns:dctype="http://purl.org/dc/dcmitype/" xmlns:dcat="http://www.w3.org/ns/dcat#" xmlns:duv="http://www.w3.org/ns/duv#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:frapo="http://purl.org/cerif/frapo/" xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#" xmlns:gsp="http://www.opengis.net/ont/geosparql#" xmlns:locn="http://www.w3.org/ns/locn#" xmlns:org="http://www.w3.org/ns/org#" xmlns:owl="http://www.w3.org/2002/07/owl#" xmlns:prov="http://www.w3.org/ns/prov#" xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" xmlns:schema="http://schema.org/" xmlns:skos="http://www.w3.org/2004/02/skos/core#" xmlns:vcard="http://www.w3.org/2006/vcard/ns#" xmlns:wdrs="http://www.w3.org/2007/05/powder-s#">
  <rdf:Description rdf:about="https://zenodo.org/record/5593850">
    <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://zenodo.org/record/5593850</dct:identifier>
    <foaf:page rdf:resource="https://zenodo.org/record/5593850"/>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>L. Jaya Singh Dhas,</foaf:name>
        <foaf:familyName>L. Jaya Singh Dhas</foaf:familyName>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Research Scholar, Department of Computer Science, Jairams Arts and Science College, (Affiliated to Bharathidasan University, Tiruchirappalli) Karur - 639003, Tamilnadu, India.</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>B. Mukunthan</foaf:name>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Research Scholar, Department of Computer Science, Jairams Arts and Science College, (Affiliated to Bharathidasan University, Tiruchirappalli) Karur - 639003, Tamilnadu, India.</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>G. Rakesh</foaf:name>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Dean of Science, Department of Computer Science, Jairams Arts and Science College, (Affiliated to Bharathidasan University, Tiruchirappalli) Karur - 639003, Tamilnadu, India.</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:title>Hybridized Gradient Descent Spectral Graph and Local-global Louvain Based Clustering of Temporal Relational Data</dct:title>
    <dct:publisher>
      <foaf:Agent>
        <foaf:name>Zenodo</foaf:name>
      </foaf:Agent>
    </dct:publisher>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#gYear">2020</dct:issued>
    <dcat:keyword>Temporal data analysis, Gradient Descent Spectral graph clustering, Local-Global Louvain method, change in modularity</dcat:keyword>
    <dct:subject>
      <skos:Concept>
        <skos:prefLabel>2249-8958</skos:prefLabel>
        <skos:inScheme>
          <skos:ConceptScheme>
            <dct:title>issn</dct:title>
          </skos:ConceptScheme>
        </skos:inScheme>
      </skos:Concept>
    </dct:subject>
    <dct:subject>
      <skos:Concept>
        <skos:prefLabel>C5989029320/2020©BEIESP</skos:prefLabel>
        <skos:inScheme>
          <skos:ConceptScheme>
            <dct:title>handle</dct:title>
          </skos:ConceptScheme>
        </skos:inScheme>
      </skos:Concept>
    </dct:subject>
    <schema:sponsor>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Blue Eyes Intelligence Engineering &amp; Sciences Publication(BEIESP)</foaf:name>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Publisher</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </schema:sponsor>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#date">2020-02-29</dct:issued>
    <dct:language rdf:resource="http://publications.europa.eu/resource/authority/language/ENG"/>
    <owl:sameAs rdf:resource="https://zenodo.org/record/5593850"/>
    <adms:identifier>
      <adms:Identifier>
        <skos:notation rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://zenodo.org/record/5593850</skos:notation>
        <adms:schemeAgency>url</adms:schemeAgency>
      </adms:Identifier>
    </adms:identifier>
    <dct:relation rdf:resource="http://issn.org/resource/ISSN/2249-8958"/>
    <owl:sameAs rdf:resource="https://doi.org/10.35940/ijeat.C5989.029320"/>
    <dct:description>&lt;p&gt;Temporal data clustering examines the time series data to determine the basic structure and other characteristics of the data. Many methodologies simply process the temporal dimension of data but it still faces the many challenges for extracting useful patterns due to complex data types. In order to analyze the complex temporal data, Hybridized Gradient Descent Spectral Graph and Local-Global Louvain Clustering (HGDSG-LGLC) technique are designed. The number of temporal data is gathered from input dataset. Then the HGDSG-LGLC technique performs graph-based clustering to partitions the vertices i.e. data into different clusters depending on similarity matrix spectrum. The distance similarity is measured between the data and cluster mean. The Gradient Descent function find minimum distance between data and cluster mean. Followed by, the Local-Global Louvain method performs the merging and filtering of temporal data to connect the local and global edges of the graph with similar data. Then for each data, the change in modularity is calculated for filtering the unwanted data from its own cluster and merging it into the neighboring cluster. As a result, optimal &amp;lsquo;k&amp;rsquo; numbers of clusters are obtained with higher accuracy with minimum error rate. Experimental analysis is performed with various parameters like clustering accuracy ( ), error rate ( ), computation time ( ) and space complexity ( ) with respect to number of temporal data. The proposed HGDSG-LGLC technique achieves higher and lesser , minimum as well as than conventional methods.&lt;/p&gt;</dct:description>
    <dct:accessRights rdf:resource="http://publications.europa.eu/resource/authority/access-right/PUBLIC"/>
    <dct:accessRights>
      <dct:RightsStatement rdf:about="info:eu-repo/semantics/openAccess">
        <rdfs:label>Open Access</rdfs:label>
      </dct:RightsStatement>
    </dct:accessRights>
    <dct:license rdf:resource="https://creativecommons.org/licenses/by/4.0/legalcode"/>
    <dcat:distribution>
      <dcat:Distribution>
        <dcat:accessURL rdf:resource="https://doi.org/10.35940/ijeat.C5989.029320"/>
        <dcat:byteSize>678343</dcat:byteSize>
        <dcat:downloadURL rdf:resource="https://zenodo.org/record/5593850/files/C5989029320.pdf"/>
        <dcat:mediaType>application/pdf</dcat:mediaType>
      </dcat:Distribution>
    </dcat:distribution>
  </rdf:Description>
</rdf:RDF>
39
18
views
downloads
Views 39
Downloads 18
Data volume 12.2 MB
Unique views 35
Unique downloads 18

Share

Cite as