Journal article Open Access
M. Alagurajan; C. Vijayakumaran
{ "files": [ { "links": { "self": "https://zenodo.org/api/files/04a8ebdf-9a30-49df-a949-dc617a107ee7/C5775029320.pdf" }, "checksum": "md5:46d80e103f7a19681bd738fb4d6e5cb8", "bucket": "04a8ebdf-9a30-49df-a949-dc617a107ee7", "key": "C5775029320.pdf", "type": "pdf", "size": 453167 } ], "owners": [ 251627 ], "doi": "10.35940/ijeat.C5775.029320", "stats": { "version_unique_downloads": 35.0, "unique_views": 64.0, "views": 67.0, "version_views": 67.0, "unique_downloads": 35.0, "version_unique_views": 64.0, "volume": 15860845.0, "version_downloads": 35.0, "downloads": 35.0, "version_volume": 15860845.0 }, "links": { "doi": "https://doi.org/10.35940/ijeat.C5775.029320", "latest_html": "https://zenodo.org/record/5593844", "bucket": "https://zenodo.org/api/files/04a8ebdf-9a30-49df-a949-dc617a107ee7", "badge": "https://zenodo.org/badge/doi/10.35940/ijeat.C5775.029320.svg", "html": "https://zenodo.org/record/5593844", "latest": "https://zenodo.org/api/records/5593844" }, "created": "2021-10-23T04:26:21.899902+00:00", "updated": "2021-10-23T13:48:42.734264+00:00", "conceptrecid": "5593843", "revision": 2, "id": 5593844, "metadata": { "access_right_category": "success", "doi": "10.35940/ijeat.C5775.029320", "description": "<p>Machine learning Has performed a essential position within the estimation of crop yield for both farmers and consumers of the products. Machine learning techniques learn from data set related to the environment on which the estimations and estimation are to be made and the outcome of the learning process are used by farmers for corrective measures for yield optimization. This paper we explore various ML techniques utilized in crop yield estimation and provide the detailed analysis of accuracy of the techniques.</p>", "contributors": [ { "affiliation": "Publisher", "type": "Sponsor", "name": "Blue Eyes Intelligence Engineering & Sciences Publication(BEIESP)" } ], "title": "ML Methods for Crop Yield Prediction and Estimation: An Exploration", "license": { "id": "CC-BY-4.0" }, "journal": { "volume": "9", "issue": "3", "pages": "3506-3508", "title": "International Journal of Engineering and Advanced Technology (IJEAT)" }, "relations": { "version": [ { "count": 1, "index": 0, "parent": { "pid_type": "recid", "pid_value": "5593843" }, "is_last": true, "last_child": { "pid_type": "recid", "pid_value": "5593844" } } ] }, "language": "eng", "subjects": [ { "term": "ISSN", "scheme": "issn", "identifier": "2249-8958" }, { "term": "Retrieval Number", "scheme": "handle", "identifier": "C5775029320/2020\u00a9BEIESP" } ], "keywords": [ "Machine Learning, Crop Yield," ], "publication_date": "2020-02-29", "creators": [ { "affiliation": "Department of CSE, SRM Institute of Science and Technology, Chennai, Tamil Nadu, India.", "name": "M. Alagurajan" }, { "affiliation": "Associate Professor, Department CSE, SRM Institute of Science and Technology, Chennai, Tamil Nadu, India.", "name": "C. Vijayakumaran" } ], "access_right": "open", "resource_type": { "subtype": "article", "type": "publication", "title": "Journal article" }, "related_identifiers": [ { "scheme": "issn", "identifier": "2249-8958", "relation": "isCitedBy", "resource_type": "publication-article" } ] } }
Views | 67 |
Downloads | 35 |
Data volume | 15.9 MB |
Unique views | 64 |
Unique downloads | 35 |