Journal article Open Access
Yamini U.; Taha Sufiyan; Thankam Paul; Suyash Gupta; R. Chinnaiyan
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="URL">https://zenodo.org/record/5591758</identifier> <creators> <creator> <creatorName>Yamini U.</creatorName> <affiliation>Department of Information Science and Engineering, CMR Institute of Technology, Bengaluru, Karnataka, India</affiliation> </creator> <creator> <creatorName>Taha Sufiyan</creatorName> <affiliation>Department of Information Science and Engineering, CMR Institute of Technology, Bengaluru, Karnataka, India</affiliation> </creator> <creator> <creatorName>Thankam Paul</creatorName> <affiliation>Department of Information Science and Engineering, CMR Institute of Technology, Bengaluru, Karnataka, India</affiliation> </creator> <creator> <creatorName>Suyash Gupta</creatorName> <affiliation>Department of Information Science and Engineering, CMR Institute of Technology, Bengaluru, Karnataka, India</affiliation> </creator> <creator> <creatorName>R. Chinnaiyan</creatorName> <affiliation>Associate Professor, Department of Information Science and Engineering, CMR Institute of Technology, Bengaluru, India</affiliation> </creator> </creators> <titles> <title>Smart Crop Monitor using Internet of Things, Cloud, Machine Learning and Android App</title> </titles> <publisher>Zenodo</publisher> <publicationYear>2020</publicationYear> <subjects> <subject>Smart Crop Monitoring, IoT, Machine Learning, Cloud, Android.</subject> <subject subjectScheme="issn">2249-8958</subject> <subject subjectScheme="handle">C6090029320/2020©BEIESP</subject> </subjects> <contributors> <contributor contributorType="Sponsor"> <contributorName>Blue Eyes Intelligence Engineering & Sciences Publication(BEIESP)</contributorName> <affiliation>Publisher</affiliation> </contributor> </contributors> <dates> <date dateType="Issued">2020-02-29</date> </dates> <language>en</language> <resourceType resourceTypeGeneral="JournalArticle"/> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/5591758</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="ISSN" relationType="IsCitedBy" resourceTypeGeneral="JournalArticle">2249-8958</relatedIdentifier> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.35940/ijeat.C6090.029320</relatedIdentifier> </relatedIdentifiers> <rightsList> <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract"><p>This paper describes a Smart Crop Monitoring system implemented using Internet of Things (IoT) for sensing environmental conditions and forwarding the data, Machine Learning to generate decisions for crop management based on the data, Cloud for storage and an Android application interface for operation of the system.</p></description> </descriptions> </resource>
Views | 36 |
Downloads | 13 |
Data volume | 11.6 MB |
Unique views | 36 |
Unique downloads | 13 |