
International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249 – 8958, Volume-9 Issue-3, February, 2020

3205

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: C6088029320/2020©BEIESP

DOI: 10.35940/ijeat.C6088.029320

Indexing Object Database using HC-Tree

Uma Perumal, Maha Ibrahim Shaabi

Abstract: One of the recent applications of object technology is

in the area of databases. One of the stumbling blocks in the

commercial development and deployment of object databases is

the lack of an efficient indexing technique. The properties of

object databases make the task of development of an indexing

technique all the more difficult. This paper discusses the

development of an indexing technique for object databases. A

new indexing technique based on a new structure, HC-Tree has

been proposed. Performance analysis has been conducted, and

experimental and analytical results indicate that the HC-Tree is

an efficient indexing structure for object databases. The

performance of the HC-Tree has also been compared with that of

the other popular existing techniques - CH-Tree, H-Tree and

hcC-Tree.

Keywords: Object Databases, Indexing, Query Retrieval, Data

Structure.

I. INTRODUCTION

During the past several years, application of object-

oriented concepts has become an important topic of research

in a number of disciplines in Computer Science such as

databases, programming languages, and knowledge

representation and computer architecture. Object technology

has evolved in three different disciplines: first in

programming languages, then in artificial intelligence and

then in databases due to the increasing demand for

sophisticated data modeling capabilities by many database

applications, object databases have recently attracted a

significant amount of attention. The very popular relational

model is inefficient when applied to complex domains like

Geographic Information System, CAD/CAM and graphic

databases. In such complex domains, object databases

provide ideal solution to data modeling.

The primary motivation for this work has been to design

an indexing structure for object databases that is an efficient

as the B-Tree [C79] is for relational databases.

Indexing in Object Databases

Indexing in object databases is to be treated distinct from

indexing in conventional databases, due to the object-

oriented characteristics of the data model. Object-oriented

data models offer additional features such as class

hierarchies, inherited attributes and class compositions,

which make the task of querying and indexing difficult.

 Queries in an object database may be classified based on

how the values are specified, and the target of the query.

Based on how the query values are specified, queries may be

classified into point queries and range queries. One major

difference between conventional database and object

database is that in an object database, a class can be

specialized into number of subclasses.

Revised Manuscript Received on February 24, 2020.

Correspondence Author*

Uma Perumal*, Department of Computer Science, Jazan

University, Kingdom of Saudi Arabia.

E-mail: prmluma@gmail.com

Maha Ibrahim Shaabi, Department of Computer Science,

Jazan University, Kingdom of Saudi Arabia.

This implies that the access scope of a query against a

class may be the instance of the class or may include

instances of all classes derived directly or indirectly from

that class. Bases on the target, queries may be classified into

single-class queries and class-hierarchy queries.

In order to support these characteristics of object

databases, an index of and object database must meet the

following requirements:

i. The index must support efficient retrieval of instances of

a single class.

ii. It must also support efficient retrieval of instance from

class hierarchy.

Indexing techniques defined in the framework of object

databases can be classified into structural - based on object

attributes and behavioral - based on method execution

profiles. The HC-Tree is a structural indexing technique.

Some of the common structural indexing methods are:

Single-class indexing - where on index is maintained for a

combination of attributes of a class, irrespective of its

position in the class hierarchy. Example: H-Trees [LOL92]

Class-hierarchy indexing - where a single secondary index

is maintained for a combination of a class hierarchy.

Example: CH-Trees [K90]

Two less popular techniques are nested attribute indexing

- where the attribute indexed is an indirect, nested attribute

of the class, and behavioral indexing - which is based on

pre-computing or caching results of methods and

maintaining an index. Both these methods are complex and

have not been studied in detail in the literature.

II. EXISTING TECHNIQUES

The three main index structures proposed in the literature

are CH-Tree, H-Tree and hcC-Tree.

CH-Tree (Class Hierarchy tree) was proposed by Kim et

al [K90]. It is based on the B+-tree. A single index is

maintained for all classes in a class hierarchy. The OIDs of

objects of all classes in the class hierarchy for a given value

of the indexed attribute are clustered together in the index.

H-Tree (Hierarchy Tree), which was proposed by Low et

al [LOL92], is a dynamic associative search index for

OODB. It is a hierarchical indexing structure based on the

B+-tree. One H-Tree structure is maintained for each class

in the class hierarchy and these trees are nested according to

their superclass-subclass relationships.

HcC-Tree (hierarchy class Chain tree) was proposed by

Seshadri et al [SS94]. It satisfies the requirements for

indexes in object databases by superimposing two different

OID clustering methods on top of a single B+-tree like

structure. The hcC-tree maintains the OIDs of instances of

classes in two chains - the class chain and the hierarchy

chain. This enables the hcC-tree to support both class-

hierarchy queries and single-class queries.

Indexing Object Database using HC-Tree

3206

Published By:

Blue Eyes Intelligence Engineering &

Sciences Publication

Retrieval Number: C6088029320/2020©BEIESP

DOI: 10.35940/ijeat.C6088.029320

III. THE HC-TREE

In this paper, we propose a new structure for indexing

object databases, and devise an indexing technique based on

this structure. Our indexing structure is called HC-tree

(Hierarchy-Chain Tree). It is a structural indexing structure,

and is similar to the CH-tree in that it maintains a single

index for all the instances of all classes in a class hierarchy.

One major advantage of this structure is that it maintains the

superclass - subclass relationship in a seamless manner.

3.1 HC-Tree structure

The proposed technique is based on the HC-tree structure.

The HC-tree is based on the B+-tree structure. It has been

proved in the literature that the B+-tree is an efficient

indexing structure. Hence we have made use of the B+-tree

as the underlying structure and have modified it to

accommodate the requirements of object database indexing.

A HC-tree contains nodes of two types: (a) Internal nodes,

and (b) Value nodes (leaf nodes)

 Internal Nodes

The internal nodes of the HC-tree are similar to the

internal nodes of the B+-tree. Each internal node has ‘m’

keys and ‘m+1’ pointers to nodes at lower levels. Each

internal node of order‘d’ contains at most ‘2d’ keys and

‘2d+1’ pointers. Actually, the number of keys (and thereby

the number of pointers), may vary from node to node, but

each node must have at least‘d’ keys and‘d+1’ pointers. As

a result, as in the case of the B+-tree, each node is at least

half full. Thus the fan out for an internal node is between‘d’

and ‘2d+1’.

In addition to the keys and the pointers, an internal node

also maintains a bitmap, with one bit for each class in the

hierarchy, to represent the presence of OIDs of the instances

of the class in the sub tree starting at the particular internal

node. The bit corresponding to a class is 1 if the class has at

least one instance with the indexed attribute value in the

range of values represented in the sub tree rooted at the

node, and 0 otherwise. The maintenance of bitmaps

significantly improves the search process by eliminating the

need for unnecessary traversals into the depth of the tree.

Value-nodes

The value-nodes are the leaf nodes of the HC-tree. Each

value-node has a key value, and stores a list of instances of

the indexed classes, having their indexed attribute value

equal to the key. The value-nodes also have bitmaps, which

serve the same purpose as bitmaps in the internal nodes. As

in the case of B+-tree, the value nodes are linked together to

form a chain of value-nodes, to speed up sequential search.

Actually, each value-node maintains a list of the classes

having at least one instance with its key value as the value of

the indexed attribute. For this purpose, CID-nodes are used.

CID-nodes

The CID-nodes are used to store the OIDs of the instances

of a particular class. The CID-node corresponding to a

particular class maintains a list of the OIDs of its instances,

which have their indexed attribute value equal to the key

value of the value-node. For the purpose of representing the

superclass-subclass relationship in the class hierarchy, each

CID-node maintains two pointers - one to the CID-node of

its left-most child representing the sub-class, and the other to

the next sibling representing the children of its superclass.

The CID-nodes are nested according to the position of the

classes in the class hierarchy. This is a very efficient method

of representing the class hierarchy as it makes optimal usage

of storage space and is also very dynamic.

OID-nodes

Each CID-node in the class list of a value-node, in turn

acts as the head of a list of its instances, which have the

indexed attribute value equal to that of the key value. The

instances (OIDs) are represented using the OID-nodes, with

one OID-node representing the identity of an object. It has

to be noted here that only the identity of an object is stored

in the index. Its state and behavior are stored only in the

database. Each database instance has only one OID-node

entry, which helps in tremendous memory saving when

compared to the hcC-tree, where each instance has two

entries - one in the hierarchy chain, and other in the class

chain.

3.2 HC-Tree indexing

A new indexing technique based on the HC-tree has been

proposed. The technique is fundamentally based on the

class-hierarchy indexing method. Performance studies of

various indexing schemes for object databases have shown

that an indexing scheme of one index for all classes in a

class hierarchy performs better than an indexing scheme that

supports one index per class.

We have already discussed that the HC-tree structure

effectively supports superclass-subclass relationships.

Hence this technique is efficient in satisfying both single-

class and class-hierarchy types of queries.

3.3 Operations on the HC-tree index

The primary operations that are performed on an index are

search, insertions and deletions.

Search: A HC-tree can be searched under two situations:

one is the tree is searched for the instances of a single class

and another one is the tree is searched for the instances of a

class and also its direct or indirect subclasses.

The values specified may be a single value or a range.

The bitmaps available at each node are used to improve the

efficiency of the search process. The HC-tree recognizes the

absence of any instance satisfying the specified query

condition by looking at the bit in the bitmap corresponding

to the searched class. The search process terminates

whenever the bit is 0, and the depth of the tree is searched

only when the value of the bits at the corresponding

positions is 1 - indicating the presence of at least one value

in the specified range belonging to the queried class (es).

This significantly improves the search process. Once the

value-node containing the entry for the instances of the class

satisfying the query condition is identified, the CID list entry

for that particular class is looked up and the OID nodes

contained in its OID list are processed, to obtain the results

of the query. The search process proceeds by looking at

exactly one node at each level of the tree, and therefore,

searching HC-trees is as efficient as searching B+-trees -

with some additional time taken for processing the OID

nodes.

International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249 – 8958, Volume-9 Issue-3, February, 2020

3207

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: C6088029320/2020©BEIESP

DOI: 10.35940/ijeat.C6088.029320

For range queries, the value-node chain is followed until

the key value in the value-node falls out of the specified

range, and for each value-node, the CID-node list is

processed.

Insertions: Inserting a new entry into the HC-tree involves

searching the index to locate the value-node where the

instance has to be inserted. If a value-node for the value of

the indexed attribute of the instance to be inserted already

exists, then the CID-node corresponding to the class of the

new object is located, and if found, the OID of the object is

inserted into the OID-node list of the CID-node. If the CID-

node for the class does not exist, then a new CID-node is

inserted, the bitmaps of the nodes in the insertion path are

duly adjusted to reflect the presence of the new node.

 If no value-node is available for the key value, then a new

value-node is inserted into the HC-tree. This process is

similar to the insertion of the leaf node in a B+-tree, and may

result in a split in case of an overflow. As a new value-node

is added, an overflowed leaf node is split and the split may

propagate up the tree until a node that can accommodate an

additional key is found. In the worst case, the split may

propagate up to the root node, in which case the height of

the tree increases by one. Once a new value-node is created,

the insertion process continues as outlined above and the

OID of the instance is inserted into the OID-node list

corresponding to the CID-node of the class to which it

belongs.

Deletions: The deletion process is simpler than the

insertion process. As in the case of insertion, the value-node

where the instance is available is located, and the OID

removed from the OID list. In some cases, the instance may

be the only instance of the class, in which case the CID-node

has to be removed, and the bitmaps in the internal nodes

altered. If the instance is the only OID entry that the value-

node contains, the value-node is itself deleted. Deletion of a

value-node (which is a leaf node) may cause the internal

node to underflow, which affects the balance of the HC-tree.

To restore balance, a redistribution of the keys is needed,

and the underflowed node is merged with either its left or

right sibling. Deletion may even cause the height of the tree

to be reduced by 1, if the underflow occurs at the root node.

In some cases, the instance that is to be deleted may not be

available in the index. This is recognized during the search

process itself, and the deletion process stops if the search is

unsuccessful.

IV. PERFORMANCE ANALYSIS

A performance analysis of the new technique has been

done along with existing techniques. This section discusses

the results obtained.

The CH-tree is very simple and easy to implement. The

CH-tree maintains only one index for the entire class

hierarchy, which has been found to be more efficient. The

CH-tree has excellent update performance, space utilization

and is most suited for point queries. Though CH-trees are

simple, they fail to satisfy all the requirements of object

database indexing. The major limitation of the CH-tree is

that it does not support the superclass-subclass relationship

naturally. This leads to degradation in performance when

applied to complex hierarchies. Searching a class hierarchy

is treated the same as searching a single class. In addition to

this limitation, performance analysis has shown that the

performance of the CH-tree degrades very fast as the queried

range increases.

The H-tree provides natural support for superclass-

subclass relationship. It is efficient both for single class and

class hierarchy queries. Though H-tree is more efficient

indexing technique, satisfying all the requirements of object

database indexing, its implementation and maintenance is

complex, due to the nesting of H-trees used to maintain the

class hierarchy. Updates in a H-tree are fairly complex. H-

trees are efficient when the number of classes is small, and

degradation in performance is observed when the number of

classes increases.

The hcC-tree supports both class-hierarchy and single-

class queries, by maintaining a class chain and a hierarchy

chain. It has been found to be well suited to answer all types

of queries efficiently. The major drawback of the hcC-tree is

the need to maintain two separate chains. This introduces

considerable space and time overheads. Memory is wasted,

as the OIDs of the instances represented in the index will

have to be stored in two separate chains, thereby resulting in

doubling of index space, which is highly undesirable. The

memory utilization is very poor, especially when the number

of instances is large, which is usually the case with most

object databases.

The HC-tree is based on class-hierarchy indexing, which

has been proved in the literature to be better than single class

indexing. A considerable improvement in memory utilization

is obtained by effective maintenance of chains for

representing the class hierarchy. Two chains are maintained

though the OIDs are stored only once. The technique

supports the superclass-subclass relationship naturally, and

hence is better than the CH-tree. As the underlying structure

is the very efficient B+-tree, this technique too, is very

efficient as far as the index operations are concerned.

Further, the tree being a self-maintaining tree, the update

cost is bounded by the height of the tree only.

The proposed indexing technique supports all the four

types of queries of the object databases efficiently, whereas

some of the existing techniques have been found to be

biased to some types of queries. This technique handles both

single-class and class-hierarchy queries in an efficient

manner.

While the hierarchy chains are needed to represent the

class-hierarchy, this it can be considered to be the drawback

of the HC-tree. The presence of the hierarchy chains results

in greater complexity of the tree. This also increases the

update costs, as the updation process may have to update the

chains.

V. CONCLUSION

In this paper, we have presented the design of the new

hierarchical structure for indexing object databases called

the HC-tree. A method for indexing object databases based

on this structure has also been proposed.

The HC-tree indexing technique is based on the class-

hierarchy method of indexing. The proposed technique has

been found to be effective for both single-class and class-

hierarchy queries.

Indexing Object Database using HC-Tree

3208

Published By:

Blue Eyes Intelligence Engineering &

Sciences Publication

Retrieval Number: C6088029320/2020©BEIESP

DOI: 10.35940/ijeat.C6088.029320

The HC-tree structure extends a natural support to

generalization-specialization relationship in the problem

domain. Taking all factors into consideration, it can be

concluded that the HC-tree indexing proposed in this paper

is more efficient than the existing techniques. The HC-tree

has been found to be consistently performing well in

answering all types of queries on object databases. It also

makes optimal usage of memory, thus reducing the burden

on available resources, while providing an efficient method

of indexing object databases.

REFERENCES

1. [BF95] Bertino E., Foscoli P. Index Organizations for Object-

Oriented Database Systems. IEEE Transaction Knowledge and Data

Engineering, Vol. 7, No 2, 1995.

2. [C79] Comer D. E. The Ubiquitous B-tree, ACM Computing

Surveys, Vol.11, No 2, 1979.

3. [KKD89] Kim W., Kim K. C and Dale A. Indexing Techniques for

Object-Oriented Databases. Object-oriented Concepts, Databases

and Applications. Addison-Wesley, 1989.

4. [K90] Kim W. Object-Oriented Databases: Definition and Research

Directions. IEEE Transaction Knowledge and Data Engineering,

Vol. 2, No 3, 1990.

5. [KKS92] Kim W., Kifer M. and Sagiv Y. Querying Object-Oriented

Databases. In Proceedings of ACM SIGMOD Conference on

Management of Data (SIGMOD’92), 1992.

6. [LOL92] Low C. C., Ooi B. C. and Lu H. H-Trees: A Dynamic

Associative search index for OODB. In Proceedings of ACM

SIGMOD Conference on Management of Data, 1992.

7. [RK95] Ramaswamy S., Kanellakis P.C., OODB Indexing by Class-

Division. In Proceedings of ACM SIGMOD Conference on

Management of Data (SIGMOD’95), 1995.

8. [SS94] Seshadri S., Sreenath B., The hcC-tree: An Efficient Index

Structure for Object Oriented Databases. In Proceedings of the 26th

International Conference on Very Large Databases, 2000..

