Published September 29, 2021 | Version v1
Conference paper Open

MECHANICAL CHARACTERIZATION OF ENERGY DISSIPATION DEVICES IN RETROFIT SOLUTION OF REINFORCED CONCRETE FRAMES COUPLED WITH SOLID WOOD PANELS

  • 1. Department of Civil Engineering and Architecture, University of Catania
  • 2. Department of Civil, Environmental and Mechanical engineering, University of Trento
  • 3. Faculty of Science and Technology, Norwegian University of Life Sciences

Description

Deep renovation interventions on existing buildings remain currently unattractive due to technical, financial and cultural/social barriers. Now that the European Union 2018 Energy Performance Directive aims to “reach the long-term greenhouse gas emission goal and decarbonize the building stock”, Member States may use their long-term renovation strategies to address risks also related to fire hazards and seismic loads in addition to energy renovation. This opens a wider market for innovative approaches in retrofit of existing buildings.                                                                                                                                                                                 The current paper illustrates the primary outcomes of an ongoing multidisciplinary Horizon 2020 research project (called e-SAFE), tackling the integration of energy, seismic and architectural renovation interventions through an innovative and combinable technological solution, applicable to non-historic RC framed buildings (i.e. built after 1950) and easily adaptable to specific climatic conditions, seismicity levels and other boundary conditions. Hence, the proposed solution will contribute to the de-carbonization of the EU building stock, reducing the occurrence of natural hazards related to climate changes, and, at the same time, to the improvement of the social resilience against earthquakes and to the enhancement of buildings architectural image.                              The seismic retrofit technology consists in the external application of modular prefabricated Cross Laminated Timber (CLT) panels on the existing perimetral walls. These panels are connected to the beams of two consecutive floors by means of friction dampers and provide additional lateral stiffness and strength to the existing structure, thus reducing the storey drift demand in case of earthquake. The friction dampers cut the force transmitted by the CLT panel to the structure and dissipate energy, which further reduce the drift demand. Strength, stiffness and dissipation capacity provided by the system are controlled by modulating the thickness and the number of CLT panels, as well as the friction dampers size.                                                                                      In this research phase, friction damper prototypes have been designed in order to optimize both mechanical performance and production process. Detailed numerical models allowed to investigate the stress distribution in the dissipative connections. The results of the preliminary testing campaign will be presented and discussed in this paper, also in relation with the findings of the numerical analysis and future tests.

Files

SAHC2021.pdf

Files (783.3 kB)

Name Size Download all
md5:93c518f1b6a573741c2966357c8f391f
783.3 kB Preview Download

Additional details

Funding

e-SAFE – Energy and Seismic AFfordable rEnovation solutions 893135
European Commission