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The operation of mobile manipulators in a collaborative environment needs to be adapted to the charac- 

teristics and skills of human operators. Human activity recognition, utilizing wearable sensors and vision 

systems, could be used to fine tune the performance of the mobile manipulator so that human opera- 

tors be better assisted. The goal is to develop a sense of safety and trust between the human and the 

manipulator in order to improve the ergonomics of the operator within the collaborative workspace. This 

paper reviews the technologies that can be used for activity tracking together with gait recognition as a 

biometric tool. These technologies could potentially allow the mobile robotic manipulator to dynamically 

adapt to the motion, skills, and intentions of the human operator and to the requirements of the task 

in action. This paper also proposes an idea of combining a gait recognition model and activity tracking 

towards improving the performance of mobile collaborative robots. 

© 2020 The Author(s). Published by Elsevier B.V. 
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. Introduction 

Human-Robot Collaboration (HRC) technologies constitute one 

f the most promising and rapidly evolving research areas in the 

anufacturing domain. The main objective of HRC technologies is 

o develop a shared environment to facilitate humans and robots 

o collaborate safely. HRC may ease out the tasks which are repet- 

tive, non-ergonomic, and hectic ( Halme et al., 2018 ). Typically, the 

ovement of a robot is monitored by advanced sensors for en- 

uring the safe operation without putting the human operator at 

isk ( Vysocky and Novak, 2016 ). A bio-inspired probabilistic model 

tilizing an unsupervised learning approach to predict the human 

otion by tracking of skeletal joints using Kinect sensor in or- 

er to facilitate online human-robot interaction task is discussed 

n Ref. ( Butepage et al., 2018 ). Nevertheless, it is quite complex 

o interpret the intention of the operator in advance using these 

echniques. Hence, activity tracking technologies, utilizing wearable 

evices combined with gait recognition techniques may be used, 

y taking advantage of motion capture sensors, such as Inertial 

easurement Units (IMU) and vision systems ( Kalkbrenner et al., 

014 ). This type of technologies and systems are discussed in this 
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aper. The objective is to review the technologies and methodolo- 

ies that may be used for improving the performance and safety 

ompliance of mobile manipulators in a production environment. 

Human activity tracking is in principle critical to determining 

he joint position and the mobility of the operator in a shared 

RC environment. The measurement and analysis of human mo- 

ion comprise an important technology for many fundamental ap- 

lications and especially for HRC. For a start, in HRC the line of 

ight between the human and the robot is variable and dynamic 

 Joukov et al., 2017 ). Hence, for fully integrating robots with hu- 

an operators, the motion of the operators must be captured in 

eal-time and on a continuous basis. For this purpose, IMUs may be 

sed. These IMUs, once attached to the user, are capable of track- 

ng the motion in three-dimensional space as well as of sensing 

he exact position of the operator ( Kalkbrenner et al., 2014 ). Then, 

hey may feed this information back to the robot, which in turn 

ay adapt to the intentions of the human operator to suit their 

otion. The use of 9 axis IMUs gives better flexibility and adapt- 

bility as they are a combination of accelerometers, gyroscopes and 

agnetometers ( Botero Valencia et al., 2017 ). When attached to 

uman operators, IMUs are capable of providing raw data pertain- 

ng to their motion ( Joukov et al., 2017 ). 

Mobile manipulators are capable of taking advantage of the 

exterity of static collaborative robots, providing, at the same time, 
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he ability to move around the shop-floor to work in different ar- 

as. However, these manipulators need to use special algorithms 

n order to deal with kinematic redundancy issues. The constraints 

ssociated with these are discussed in ( Navarro et al., 2017 ), where 

 redundancy solution is proposed for improving the HRC perfor- 

ance. 

The present paper reviews the various technologies that can be 

sed to perform activity tracking utilizing IMU and vision sensors 

s well as gait recognition techniques and presents the implica- 

ions of using gait analysis to improve the collaborative nature of 

obots. Section 2 provides a literature review of existing systems 

nd technologies that are used in the context of HRC in the manu- 

acturing domain. Section 3 reviews the technologies that are cur- 

ently used in motion tracking to monitor human activities and 

asks, such as walking or pick-and-place activities. Section 4 de- 

cribes the challenges of implementing these technologies. Finally, 

n overview of relevant technologies and potential future work are 

rovided in Section 5 . 

. State of the art 

The concept of developing collaborative environments involving 

obile manipulators, utilizing activity tracking technologies com- 

lemented with human recognition techniques is relatively new. 

lthough there has been a significant volume of research focusing 

n human-robot collaboration, for the most part, it is related to 

he safety analysis of HRC or to the use of HRC in the healthcare

ndustry. The use of HRC in the manufacturing domain has drawn 

 lot of attention lately but when it comes to the concepts involv- 

ng activity tracking and gait analysis for HRC, there have not been 

any recent relevant publications. 

One of the major challenges is to have an interface between the 

MU and the human operator that is accurate enough for allowing 

he reliable gait recognition. In Ref. ( Vargas-Valencia et al., 2016 ), 

 method for the placement and calibration of the IMU on the hu- 

an joints is discussed. It measures the angles of the lower-limb 

oints by discretizing the limbs as different technical-anatomical 

rames. This is then validated in three different applications. The 

enefit of the method is that it includes swift sensor placement 

ithout the need of using any special tools or performing any 

omplex movements. 

A method to filter the data from IMU sensors utilizing pas- 

ive filtering algorithms, such as Mahony-Hamel, to reconstruct the 

igid kinematic bodies is discussed in Ref. ( Santaera et al., 2015 ). 

nother method to obtain the 3-dimensional skeletal points of the 

uman operator, using multiple depth perception sensors, is dis- 

ussed in Ref. ( Ragaglia et al., 2018 ). The measured points can be

ombined using sensor fusion algorithms to estimate the position 

nd velocity of the joints of the operator. Therefore, the analysis of 

he workspace within the proximity of the operator in real-time is 

nabled. 

In Ref. ( Tortora et al., 2019 ) , IMU sensors coupled with Elec-

romyography (EMG), allow for the detection of the motion and the 

alculation of the direction of the motion of the human operator. 

lso, the data from IMU is used to train a Hidden Markov Model 

HMM), which is responsible for motion prediction in terms of di- 

ection and intention. These two outputs from the model are then 

ed into a Finite State Machine (FSM) that controls the motion of 

he robot with respect to the movements of the human operator. 

n HMM-based approach presented in Ref. ( Mandery et al., 2016 ) 

s used to obtain a suitable set of features for the dimensionality 

eduction of human motion recognition. This study showed that a 

mall subset of features was enough to perform reasonable recog- 

ition and the center of mass of the body was always a part of the

et of features. 
212 
The analysis of various algorithms for physical activity recog- 

ition using wearable sensors, such as k-Nearest Neighbor (k-NN), 

upport Vector Machines and HMM, for unsupervised and super- 

ised learning models is presented in Ref. ( Attal et al., 2015 ). The

utcome of the research shows the performance of the model is 

etter when using k-NN for supervised learning and HMM for un- 

upervised learning. 

In Ref. ( Liang et al., 2016 ) , the researchers argue the use of

earable IMU sensors, stating that wearing such devices at all 

imes may cause inconvenience to the human operator. The use of 

on-contact devices and methods is preferred towards modelling 

he full-body motion of the human operator with 23 degrees of 

reedom via visual signals. The non-contact sensor used in the re- 

earch was a Kinect sensor 2.0 to acquire the position of the hu- 

an operator. A decision system built for recognizing graspable 

bjects as well as for predicting the intentions of a human oper- 

tor handing over a part, using IMU and EMG (Electromyography) 

ensors, in order to facilitate the coordination of tasks in an HRC 

cenario is discussed in Ref. ( N. Wang et al., 2019 ). The sensory 

ystem is placed on the operator’s forearm. 

The accuracy of tracking involving a LeapMotion sensor and a 

inect V2 sensor can be improved by reducing the noise from 

he data obtained from them by using a Kalman filter-based algo- 

ithm, as discussed in Ref. ( Li et al., 2019 ). Malaisé et al. made use

f a wearable motion tracking suit along with a sensorized glove 

or the recognition of seven distinct activities in a pick-and-place 

cenario resembling the settings of a manufacturing environment 

 Malaisé et al., 2018 bib16 ). Using HMM for probabilistic recogni- 

ion, the researchers showed that the model was able to recognize 

6% of the activities precisely with the use of a wearable tracking 

uit and a sensorized glove. 

A combination of activity recognition and task-based con- 

rol model to support human operator is discussed in Ref. 

 Uzunovic et al., 2018 ). Wireless activity tracking sensors are used 

o recognize the intention of the operator. This information is used 

s an input to a task-based controller that selects one or more 

unctions to complete the task, which results in aiding the human 

perator, thus reducing the physical effort. Real-time identification 

f six gestures and an architecture to control a mobile manipulator 

sing a search-based algorithm is discussed in Ref. ( Kulkarni et al., 

019 ). Furthermore, a Robotic Operating System (ROS) - based ar- 

hitecture facilitated the integration of different mobile manipula- 

or platforms and allowed for the addition of new gestures to a 

atabase. 

In Ref. ( Weitschat et al., 2018 ), an experimental setup to track 

he motion and activity of a human arm using advanced motion 

apture sensors was presented. The sensors were placed on the 

rms of the human joint and the overall concept was validated 

n a manufacturing scenario. The objective of this research was to 

rack the movement of the operator’s arm to attain the robot path 

herein a collision would occur. Then, the time taken for the arm 

o intervene in the robot’s path or to reach the robot is computed, 

n order for the robot’s velocity to be controlled towards improving 

he overall efficiency of an HRC process. 

The next sections focus on the use of different technologies and 

ensors for the recognition of activities of a human operator in an 

RC environment. 

. Current technologies 

This section describes the concept of developing safe HRC, uti- 

izing the identification model that can be built by using wearable 

ensors. This model can potentially be used in the manufacturing 

omain aiming at a) improving the overall process performance 

nd b) better supporting the human operator. By extending the 

pplicability of wearable sensors, a gait recognition model may be 
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Fig. 1. Measurement of the number of steps of a human operator using IMU sensors. The peaks show the number of steps measured. 
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Fig. 2. Body tracking SDK from Microsoft Kinect Azure giving information about the 

joints of a human model. 
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eveloped in order for the collaborative robot to be capable of pro- 

iding more customized support in the shop floor. 

.1. Safe human-robot collaboration 

Collaborative mobile manipulators are used in the manufactur- 

ng industry and serve as a platform that is capable of assisting 

uman operators by carrying out tasks autonomously ( Kousi et al., 

018 ). However, there are various challenges associated with the 

avigation and the perception of mobile manipulators within their 

onfined environment. The Internet of Robotic Things, discussed in 

ef. ( Simoens et al., 2018 ), summarizes the added value of combin- 

ng the Internet of Things (IoT) with robotic technologies to make 

obile robots more adaptable to their environment. 

The concept reviewed in this paper involves the use of sen- 

ors, such as IMU and Vision systems, that can potentially be used 

o develop safe HRC by reliably tracking the operator’s activities 

n manufacturing shop-floor. The gait of each person is different 

 Birdal et al., 2018 ). For this reason, gait can be used as a biomet-

ic tool, integrated in a unique definitive model of individual hu- 

an operators, to support their operation in the shop-floor, while 

arrying out different tasks. The process tracking may involve sim- 

le activity monitoring, calculating the speed of task execution or 

he efficiency of an operation, as well as the analysis of ergonomic 

actors ( Malaisé et al., 2018 bib16 ). Later on, this information may 

e processed using machine learning algorithms and be fed back 

o the robot so that the level of assistance to the human operator 

e personalized. Depending on the level of assistance required, the 

obot can autonomously plan to carry out other production tasks. 

.2. Sensors for gait 

.2.1. IMU 

IMU sensors are the widely preferred type of motion tracking 

ensors for analyzing the activity and gait of a human operator. 

ith the growth of mobile phone technologies, these sensors are 

ikely to be present on a smartphone. Typically, an IMU sensor con- 

ists of accelerometers, gyroscopes, and sometimes magnetome- 

ers. The combination of accelerometer and gyroscope is typically 

sed in gait analysis for computing the number of steps, the step 

ength and the distance traveled ( De Marsico and Mecca, 2019 ; 

usca et al., 2018 ). The data from magnetometer is utilized to 

ompute the direction of the magnetic field ( De Marsico and 

ecca, 2019 ). Fig. 1 . illustrates how the number of steps of a hu-

an operator may be calculated by using the accelerometer data. 
213 
Unlike the sensors available in mobile phones, there are various 

ommercially developed IMU sensors that focus more on providing 

aw as well as processed information for analysis. They are used 

n gesture recognition, activity tracking, and in the assessment of 

rgonomic factors ( Yu et al., 2017 ). 

IMU sensors are typically placed on the body of the human 

perators and close to the joints. The frames of the IMU sensors 

eed to be aligned to the frame of the joint ( Narváez et al., 2018 ).

his facilitates the collection of information that can be used in the 

odeling of human body in a simulation environment. Also, they 

an be used to monitor and track the activities of the operator. 

An IMU sensor is therefore a nonintrusive contact-based sen- 

or placed on the operator to collect the data. Whereas, a vision 

ased system is a nonintrusive contactless method of motion cap- 

uring ( Liang et al., 2016 ). The amalgamation of these technologies 

ncreases the overall effectiveness and the performance of the sys- 

em ( Glonek and Wojciechowski, 2017 ). 

.2.2. Vision system 

A vision sensor is in principle capable of providing body track- 

ng capabilities that enable gait recognition. Vision sensors have 

een used for detecting the movement of 20 joints of the human 

perator in a shop-floor and are also capable of tracing human ac- 

ivities ( Gavrilova et al., 2018 ). The human activities that mainly 

ccur in the shop-floor include walking, picking of parts as well as 

ssembly of components. Fig. 2 shows the output from an applica- 

ion using the Azure Kinect body tracking SDK framework. 
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Fig. 3. Overview of the proposed framework involving activity tracking to optimize 

the parameters of the collaborative mobile manipulator. 
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Vision sensors can also be used as a tool for gesture-based con- 

rol to provide instructions to the mobile manipulators through 

irect interaction ( Kousi et al., 2019 ). Moreover, by taking advan- 

age of the capabilities of sensor fusion algorithms, the information 

rom the IMU sensors and vision sensors can be fused together. 

This way, sensors complement each other and overcome the 

hallenges faced by using each of these two devices alone ( Malaisé

t al., 2018 bib16 ; Tarabini et al., 2018 ). 

.2.3. A conceptual framework for the development of safe HRC using 

ait analysis 

The combination of various sensors for monitoring and analyz- 

ng the gait of an operator towards improving the performance 

f collaborative mobile manipulators is a relatively new approach, 

hich may make the execution of a task easier ( Hoffman, 2019 ). 

oreover, their successful integration in HRC cells may lead to the 

evelopment of a sense of trust between humans and collaborative 

obots. A similar approach for capturing human data and for mod- 

ling the human operator, using motion capture and sensor data 

usion in the shop-floor, may be used for creating a digital twin 

f the human operator carrying out tasks, and is discussed in Ref. 

 Nikolakis et al., 2019 ). 

In the following paragraphs, the outline of a simple conceptual 

ramework is presented ( Fig. 3 ), describing how IMU sensors and 

ision sensors may be used to monitor the motion of an operator, 

ho is close to a mobile manipulator. 

First off, an unsupervised learning algorithm can be used to 

uild a model to classify and assign a unique id to the human 

perator. A machine learning-based approach could then be im- 

lemented for identifying the human operator with an assigned id 

 Potluri et al., 2019 ). The resulting software framework would be 

apable of tracking various operator’s activities, in order to adapt 

he operation of the mobile manipulator to the skills or intentions 

f the operator ( Malaisé et al., 2018 bib16 ; Nikolakis et al., 2019 ). 
214 
An example is presented here, where an operator has to fill a 

ox with 100 components and a mobile manipulator has to trans- 

er the box to another area once it is filled. If there are two differ-

nt operators capable of performing this task and operator 1 car- 

ies out a pick and place operation at 25 pcs / min and operator 2

oes the same operation at the rate of 20 pcs / min, the idle time

f the mobile manipulator waiting for operator 2 will be longer. A 

ask planning algorithm can schedule an operation for the mobile 

anipulator to carry out in the meantime. This can be done, based 

n the feedback from the sensor fusion algorithm. Furthermore, for 

ome cases, the velocity signal coming from an IMU sensor can po- 

entially be used to allow the mobile manipulator to synchronize 

ts movement in a shop floor. 

.3. Impact of these technologies 

Gait analysis may serve as an identification model just like a 

arcode or an RFID-based identification ( Prasetyo et al., 2018 ). But 

nlike the previous methods, the advantage of the proposed frame- 

ork is that a model of a human operator can be built with min- 

mum information or prior knowledge, using unsupervised learn- 

ng methods for allowing gait recognition. Later on, and coupled 

ith task and action planning algorithms, intermediate tasks may 

e planned for the mobile manipulator, considering the operator’s 

peed and overall performance ( Tsarouchi et al., 2016 ). These tasks 

ay involve transferring parts from the warehouse to the shop- 

oor, robot power charging, as well as tasks that require no input 

rom the human operator. 

By taking advantage of similar models that are capable of de- 

ecting the intentions of the operator, the real-time control of the 

ovement of mobile manipulators in complicated indoor environ- 

ents could be further improved ( Yang et al., 2019 ). This way, a

moother cooperation with the operator and a better overall pro- 

uction performance could be expected. 

By employing big data analytics technologies, big volumes of 

istorical data could be used for training machine learning models 

o improve the accuracy of activity recognition and tracking. This 

pproach has the advantage that it will be more efficient with time 

s more data becomes available. 

. Challenges 

A number of challenges will need to be addressed in the future, 

ncluding: 

• Understanding the architecture of the mobile manipulator, 

• Optimizing the sensors-robot communication, 

• Collecting and analyzing sensor data in real-time, 

• Implementation and maintenance costs, and 

• Data collection and protection issues. 

Firstly, the commercially available mobile manipulators are not 

et user-friendly enough in terms of allowing their easy program- 

ing. Intrinsic knowledge regarding automation and robotics as 

ell as advanced programming skills are typically required. Mobile 

anipulators may be a topic of interest to many manufacturing in- 

ustries, yet there are lots of areas to be further explored to make 

obile manipulators fully autonomous and operational in complex 

nvironments ( Madsen et al., 2015 ). For instance, managing a fleet 

f two or more mobile manipulators is significantly more compli- 

ated than just introducing one in a typical shop-floor. 

Secondly, the development of operator’s motion and gait mod- 

ls requires the effective integration of the sensors with the mo- 

ile manipulator. Some IMU sensors, for instance, require Bluetooth 

ow Energy (BLE) compliant modules. Hence the architecture of 

he mobile manipulator must support this technology ( Ajerla et al., 
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Fig. 4. Overview of the impact of cost on the feature provided by the hardware. 
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019 ). Also, the use of IMU sensors for monitoring the indoor nav- 

gation of human operators may be affected by the presence of 

lectromagnetic fields that may be present in typical shop-floor 

nvironments ( Tarabini et al., 2018 ). 

Thirdly, collecting and analyzing information may also prove a 

ritical success factor. In the case of the IMU sensors, the connec- 

ivity range of the sensors is crucial. As the operational environ- 

ent is complex and dynamic, there are chances that drift, con- 

ectivity and latency issues may cause significant errors. Likewise, 

n the case of vision systems, the operator needs to be within the 

eld of view ( Malaisé et al., 2018 bib16 ). Moreover, other chal- 

enges include the fact that human positions need to be constantly 

ept tracked, so that human operators be accurately detected and 

dentified in a complex environment. The existence of Application 

rogramming Interfaces (APIs), together with detailed documenta- 

ion and online communities, are also factors that need to be con- 

idered when deciding to implement wearable solutions for track- 

ng applications. Therefore, sophisticated approaches involving ac- 

ivity trackers and vision systems are required to deploy safe HRC 

 H. Wang et al., 2019 ). 

The cost of hardware devices and associated software is also a 

ignificant factor to be considered. There are wide ranges of IMU 

nd vision sensors available for various applications. The cost of 

ach available technology usually depends on the range of fea- 

ures it provides. Fig. 4 shows the variation of cost with respect to 

he available features. The features may include ease of integration 

ith simulation tools, dedicated customer support, online forums, 

ommunities, and APIs. 

Finally, ethics and General Data Protection Regulation (GDPR) 

eed to be seriously considered. The collection and storage of op- 

rators’ information will have to be very transparent to the opera- 

or. 

. Discussion 

This paper discusses the advantages and challenges of using 

earable and vision sensors to adapt the operation of mobile col- 

aborative manipulators to the human operators they are working 

ith, in order to enhance the performance and safety of human- 

obot collaborative tasks. The integration of wearable devices in 

RC configurations is expected to be an important research field 

ver the next years. Fully automated robotic solutions may be very 

xpensive and complex, especially in cases where a higher degree 

f flexibility and an increased number of product customization 

ptions are required. HRC may be the most cost-efficient option 

n such cases, but still, the full integration of human operators and 

obots would require a high degree of intelligence on the manip- 

lators’ side, so that they can match, where possible, the human 

perators’ capabilities and skills. Towards this direction, the use of 
215 
dvanced wearable devices could support the continuous tracking 

nd analysis of human activity. 

IMU and vision sensors are expected to be the workhorses in 

perator tracking applications. The increase of computing power, 

he further improvement of the performance of machine learning 

pproaches, the Industrial Internet of Things and Industry 4.0 tech- 

ologies will all contribute to the faster integration of sensors in 

tandard production environments. However, the data accuracy, the 

ata analysis speed, implementation and maintenance costs, to- 

ether with ethics and GDPR issues will be the most critical fac- 

ors that will affect the when and the how wearable devices will 

e massively introduced and integrated in HRC applications. At the 

ame time, it is important to note that sensor-based human opera- 

or tracking in HRC tasks will have to offer advantages that surpass 

he implementation costs. 
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