Journal article Open Access

Quality control and class noise reduction of satellite image time series

Santos, Lorena; Ferreira, Karine; Camara, Gilberto; Picoli, Michelle; Simoes, Rolf


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2021-04-21</subfield>
  </datafield>
  <controlfield tag="005">20211020014848.0</controlfield>
  <controlfield tag="001">5578923</controlfield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o">oai:zenodo.org:5578923</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;The extensive amount of Earth observation satellite images available brings opportunities and challenges for land mapping in global and regional scales. These large data sets have motivated the use of satellite image time series analysis coupled with machine learning techniques to produce land use and cover class maps. To be successful, these methods need good quality training samples, which are the most important factor for determining the accuracy of the results. For this reason, training samples need methods for quality control of class noise. In this paper, we propose a method to assess and improve the quality of satellite image time series training data. The method uses self-organizing maps (SOM) to produce clusters of time series and Bayesian inference to assess intra-cluster and inter-cluster similarity. Consistent samples of a class will be part of a neighborhood of clusters in the SOM map. Noisy samples will appear as outliers in the SOM. Using Bayesian inference in the SOM neighborhoods, we can infer which samples are noisy. To illustrate the methods, we present a case study in a large training set of land use and cover classes in the Cerrado biome, Brazil. The results prove that the method is efficient to reduce class noise and to assess the spatio-temporal variation of satellite image time series training samples.&amp;nbsp;&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">National Institute for Space Research (INPE), Brazil</subfield>
    <subfield code="0">(orcid)0000-0003-2656-5504</subfield>
    <subfield code="a">Ferreira, Karine</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">National Institute for Space Research (INPE), Brazil</subfield>
    <subfield code="0">(orcid)0000-0002-3681-487X</subfield>
    <subfield code="a">Camara, Gilberto</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">National Institute for Space Research (INPE), Brazil</subfield>
    <subfield code="0">(orcid)0000-0001-9855-2046</subfield>
    <subfield code="a">Picoli, Michelle</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">National Institute for Space Research (INPE), Brazil</subfield>
    <subfield code="0">(orcid)0000-0003-0953-4132</subfield>
    <subfield code="a">Simoes, Rolf</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">15230400</subfield>
    <subfield code="z">md5:b5c8352281a4eb4e78c30d5d884a66e1</subfield>
    <subfield code="u">https://zenodo.org/record/5578923/files/Santos et al. - 2021 - Quality control and class noise reduction of satel.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">National Institute for Space Research (INPE), Brazil</subfield>
    <subfield code="0">(orcid)0000-0003-2612-5859</subfield>
    <subfield code="a">Santos, Lorena</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Self-organizing maps</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Bayesian inference</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Satellite image time series</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.1016/j.isprsjprs.2021.04.014</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Quality control and class noise reduction of satellite image time series</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
</record>
74
54
views
downloads
Views 74
Downloads 54
Data volume 822.4 MB
Unique views 70
Unique downloads 47

Share

Cite as