Journal article Open Access

Using Derived kernel as a new Method for Recognition a Similarity Learning.

Ramadhan A. M. Alsaidi,; Ayed R.A. Alanzi; Saleh R. A. Alenazi; Madallah Alruwaili

MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="">
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Feature Extraction; Hierarchical Learning; Entropy Measures; Pearson Correlation Coefficient; Pooling Operation; Sample.</subfield>
  <controlfield tag="005">20211020014847.0</controlfield>
  <controlfield tag="001">5577067</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">department of Mathematics, Majmaah University,  Majmaah 11952, Saudi Arabia.</subfield>
    <subfield code="a">Ayed R.A. Alanzi</subfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Computer Technology department, Tabuk College  of Technical, Tabuk, Saudi Arabia</subfield>
    <subfield code="a">Saleh R. A. Alenazi</subfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">College of Computer snd Information Sciences,  Jouf University, Skaka, Aljouf, Saudi Arabia.</subfield>
    <subfield code="a">Madallah Alruwaili</subfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Publisher</subfield>
    <subfield code="4">spn</subfield>
    <subfield code="a">Blue Eyes Intelligence Engineering  &amp; Sciences Publication (BEIESP)</subfield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">1156263</subfield>
    <subfield code="z">md5:7b6e3fb3fc58bf09ba28fa2a253714b4</subfield>
    <subfield code="u"></subfield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2020-02-29</subfield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o"></subfield>
  <datafield tag="909" ind1="C" ind2="4">
    <subfield code="c">1994-1980</subfield>
    <subfield code="n">3</subfield>
    <subfield code="p">International Journal of Engineering and Advanced Technology (IJEAT)</subfield>
    <subfield code="v">9</subfield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">department of Mathematics, Jouf  University, Gurayat, Saudi Arabia.</subfield>
    <subfield code="a">Ramadhan A. M. Alsaidi,</subfield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Using Derived kernel as a new Method for Recognition a Similarity Learning.</subfield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u"></subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2"></subfield>
  <datafield tag="650" ind1="1" ind2=" ">
    <subfield code="a">ISSN</subfield>
    <subfield code="0">(issn)2249-8958</subfield>
  <datafield tag="650" ind1="1" ind2=" ">
    <subfield code="a">Retrieval Number</subfield>
    <subfield code="0">(handle)C5705029320/2020©BEIESP</subfield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;A new technique for feature withdrawal by neural response is going to be familiarized in this research work by merging an entropy measure with Squared Pearson correlation Coefficient (SPCC) method. The process of choosing effective models on the basis of entropy measures was proposed further to enhance the ability to select templates. For more accurate similarity measure we used the statistical significant relationship between functions. The research illustrate that the proposed method is proficiently compared with the state-of-the-art methods.&lt;/p&gt;</subfield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">issn</subfield>
    <subfield code="i">isCitedBy</subfield>
    <subfield code="a">2249-8958</subfield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.35940/ijeat.C5705.029320</subfield>
    <subfield code="2">doi</subfield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
Views 10
Downloads 15
Data volume 17.3 MB
Unique views 10
Unique downloads 14


Cite as