

Space Qualification for Open-Source Real-Time Multicore OS RTEMS

Matthias GÖBEL, Sebastian HUBER and Thomas DÖRFLER

embedded brains GmbH, GERMANY

Introduction

Background of RTEMS & SMP features

Space qualification of RTEMS SMP

- Concept
- Process
- Deliveries

Experience with Open Source apporach in professional environments

Intro: embedded brains GmbH

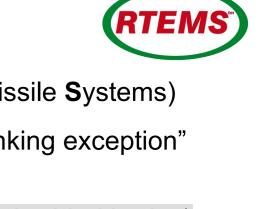
Small company ~ 15 employees, founded in 2004

Specialised on hard- and software-engineering for high-performance systems

Main RTEMS developer and supporter in Europe

Domains:

- Aerospace
- Automotive
- Industrial Automation



embedded

RTEMS Background

embedded

... and it works

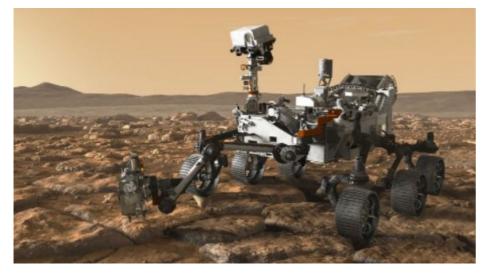
RTEMS: Real Time Embedded Operating System

Origins from US Army in the 1980s (Real-Time Executive for Missile Systems)

Since 1990s continued as Open Source Software ("GPLv2 w/linking exception" moving to "two paragraph BSD")

Symmetric Multiprocessing (SMP) since 2015 (developed by embedded brains)

ECSS Space pre-qualification to (TDB by end 2021)


Application areas

- Space industry (satelites)
- Industrial equipment (e.g. hand tools, autonomous vehicles, quality control of bank notes)
- Professional audio
- Machine control (e.g. for radio telescopes)

RTEMS mission launches

NASA Perseverance Mars Rover

SPARRC v7 based Command and Data Management Unit (CDMU) and Altitude Control Computer (ACC)

UAE KhalifaSat

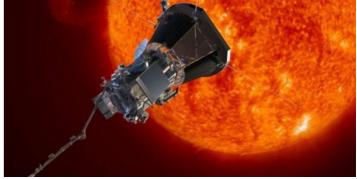
SPARC LEON3 based remote sensing satellite capable of imaging the earth at 0.7 meters

NASA ICESat-2

Advanced Topographic Laser Altimeter System (ATLAS) runs RTEMS on a mix of SPARC and PowerPC CPUs

ESA BepiColombo

RTEMS on MERTIS (MErcury Radiometer and Thermal infrared Imaging Spectrometer)


NASA Parker Solar Probe

SPARC Flight Computer

DLR Eu:CROPIS SPARC based life-support, growing tomatoes in space

https://www.rtems.org/

OBDP Workshop: RTEMS Space Qualification

17 June 2021

RTEMS features

- Scalability: Same software platform for very basic microcontrollers (~ 64kB memory footprint) up to high performance 64bit multicore machines (current industrial applications up to 24 cores)
- Continuous development and availability for >30 years
- Curent release 6.1
- Wide range of 32/64 bit microrcontrollers supported (e.g. GR712 and GR740, but also popular ARM cores, PowerPCs, RISC-V and more)
- POSIX and API interfaces
- Open MP support
- C11/C++11 threading and synchronization supported including thread local storage
- Gaisler GRLIB integrated in RTEMS
- Flattened Device Tree (FDT) support
- Support for QorIQ DPAA including 10 Gbit/s Ethernet

RTEMS SMP features

- BSPs supporting SMP:
 - SPARC (1 to 4 cores): GR712C and GR740
 - PowerPC (1 to 24 cores): QorIQ (e.g. P1020, P2020, T2080, T4240)
 - ARMv7-A (1 to 4 cores): Altera Cyclone V, Xilinx Zynq, Raspberry Pi2
 - RISC-V (1 to 2 cores)
- Scalable timer support for SMP systems
 - Priority queues for timers (e.g. red-black trees)
 - Timer expiration distributed across processors
- Fine grained locking (Big Kernel Lock removed)
- Locking Protocols for Mutual Exclusion
 - Transitive priority inheritance tracked across multiple resources
- Priority ceiling
 - O(m) Independence-Preserving Protocol (OMIP)
 - extends priority inheritance to clustered scheduling
 - Multiprocessor Resource-Sharing Protocol (MrsP)
 - extends priority ceiling to clustered scheduling
- Limitation: Memory protection not available

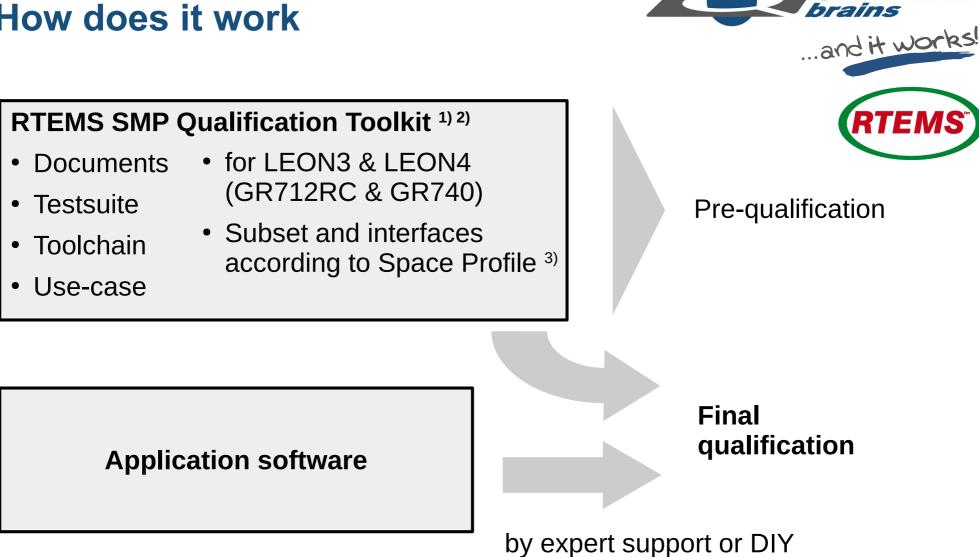
...and it work

ECSS Qualification of RTEMS-SMP

Aim

- Provision of a free "starter-kit" for RTEMS qualification
- Low-threshold qualification process

Includes


- Pre-qualification for ECSS Cat. C and D for selected configurations
- Verification evidence for RTEMS and a selection of libraries
- Validation evidence to demonstrate that requirements are met
- Guidance to end-users on how to replicate and use (or extend) these results for a full qualification

Organisation

- Funding: ESA (with national partner organizations)
- Consortium:
 - edisoft (Portugal)
 - embedded brains (Germany)
 - Lero (The Irish Software Research Centre / Trinity College Dublin, Ireland)
 - Jena Optronik (Germany)
- Runtime: Dec 2018 Dec 2021

How does it work

¹⁾ Can be extended for other controllers and further interfaces and subsets ²⁾ Subset of the full RTEMS repository (both updated synchronously) ³⁾ https://rtems-qual.io.esa.int/qdp/tn-space-profile.pdf

embedded

What to expect

Qualification Data Package (QDP)

Includes

- Project results,
- All source code,
- Documents,
- Binaries,
- Test-suites,

Ready to

- Build applications,
- Re-run tests and
- Work with qualification documentation

For free!

embedded

... and it works!

- Static code checker results form Coverity, CLANG, and CppCheck
- Product and process metrics
- Assessment of testing and validation activities and
- Problem and the none-conformance reports

Open Source – the key to independence and affordability (1)?

The positives

- No loyalties
- Easy start without bureaucrazy
- 100% transparency for source code
- Supportive community (hopefully...), no monopoly for product support
- No changes in business model of supplier
- No obligation to update according to suppliers plans

The risks

- Providing own contributions to competitors for free
- No active marketing
- Difficulties to address strategic investments
- License conditions may imply restrictions for own source code
- Solidity of roadmap

for independant projects

OBDP Workshop: RTEMS Space Qualification

Open Source – the key to independence and affordability (2)?

- Underestimation of the resources required for creating new functions / interfaces
- Creation of a "private" version: earlier or later this will be completely outdated (as the public version will develop separately)
- Need to keep updated with many (or all main) developments in the community version

Outlook

- RTEMS Foundation
 - Coordination of acitivities
 - Protecting investments in an appropriate way
- Provision of supporting expertise (different sources)

mbedded

... and it works

Outlook

RTEMS SMP Qualification Toolkit

- for LEON3 & LEON4 (GR712RC & GR740)
- Subset and interfaces according to Space Profile

available to public (completed by 12/21)

QDP's for other controllers

- DAHLIA SoC
- various ARM-cores (BSPs available)
- RISC-V (BSP available)

Further interfaces and drivers

•

Extended RTEMS subset

by expert support, community effort, or DIY

. . . .

Conclusion

RTEMS provides an attractive option for a long-standing Open-Source-Real Time Operating System

RTEMS-SMP extends functionality for high-performance multicore systems such as GR740, DAHLIA Soc and RISC-V

The RTEMS SMP qualification toolkit adds a free framework of documents and test software in order to facilitate ECSS qualification. This provides a low-threshold entry to qualification (cat. C and D)

An ISVV is on its way for ECSS cat. B qualification

The framework can and shall be extended for further controllers and interfaces

A cooperative approach involving expert support and community is not imperative (but more efficient)

Thank you!

Further information:

RTEMS Space Qualification

https://rtems-qual.io.esa.int/

www.embeddded-brains.de

Author contact:

Dr Matthias GÖBEL matthias.goebel@embedded-brains.de

embedded brains GmbH D-82178 Puchheim, GERMANY

Phone: +49 89 189 4741 20