

Compressive imaging and deep learning based image reconstruction methods in the "SURPRISE" EU project

<u>E. Magli²</u>, T. Bianchi², D. Guzzi¹, C. Lastri¹, V. Nardino¹, L. Palombi¹, V. Raimondi¹, D. Taricco², D. Valsesia² ¹CNR–IFAC (Italy), ²Politecnico di Torino (Italy)

The SURPRISE project

SUper-Resolved comPRessive InStrument in the visible and medium infrared for Earth observation applications (SURPRISE)

Start date: 1 January 2020 – duration: 3 year

- Technologies: compressive sensing + SLM + deep learning
- Consortium: CNR-IFAC, CSEM, POLI-TO, ACRI-ST, SAITEC, RESOLVO, IPMS, LEONARDO

Main objectives

- Implement a demonstrator of a super-spectral EO payload in the Visible-Near InfraRed (VNIR) and Medium InfraRed (MIR) with enhanced performance in terms of at-ground spatial resolution, on-board data processing and encryption functionalities.
- Demonstrate the functioning of SLM technology in relevant environment, with particular reference to its operation in the MIR.
- Analyse the impact of enhanced performance on EO application products and services.
- Uptake of disruptive technological research by EU industry.

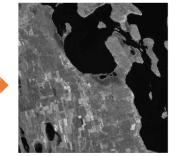
CS in a nutshell

- CS exploits the fact that images have a compact representation in **some** domain
- Linear image sensing process: y = Ax
- Non-linear image reconstruction:

 $\min_{x} \|x\|_{0/1} \ s.t. \ y = Ax$ $\min_{x} TV(x) \ s.t. \ y = Ax$

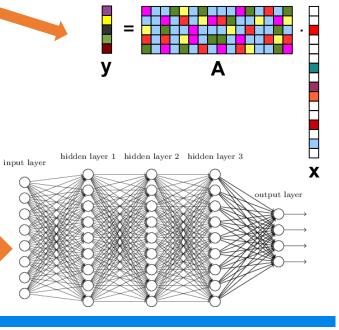
Iteratively minimize a cost function using gradient descent

Employ deep learning as non-linear model \rightarrow training set

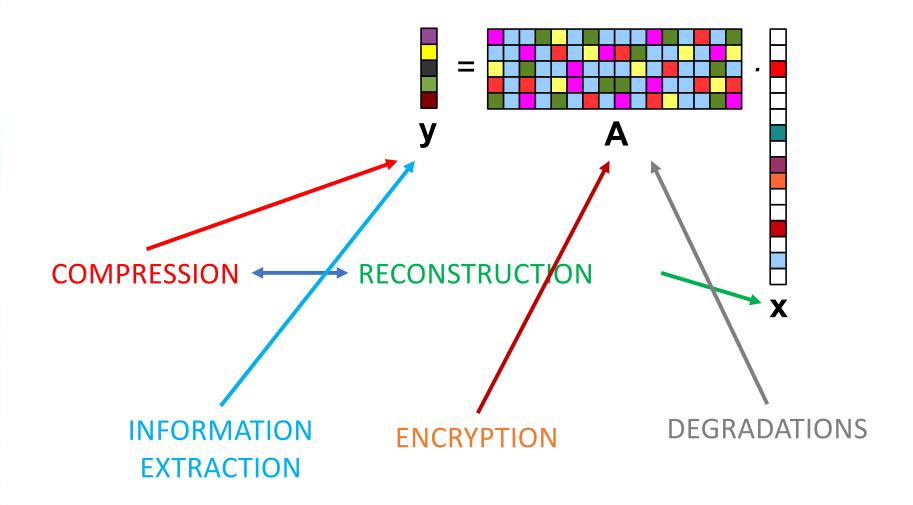


Image

Discrete cosine transform

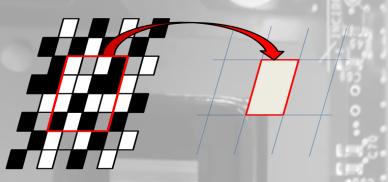


Role of CS in SURPRISE



URPRISE - WP5 presentation

SLM technology and super-resolution



SLM (high resolution + masking) Low-resolution detector

VIS-NIR+MWIR

A super-resolution imaging system is an imaging system whose resolution is enhanced with respect to the one dictated by the number of pixel of the detector.

- Super-resolution optical system → SLM with a high number of micromirrors. Each pixel of the detector integrates the light coming from NxN SLM elements.
- A series of measurements is acquired using a different coding mask for each measurement.
- If the number of measurements are less than NxN, we obtain an inherent data compression.
- The random pattern of micromirror positions can also be used as encryption key

Image reconstruction - model-based

• Performs minimization of the TV norm of the reconstructed image

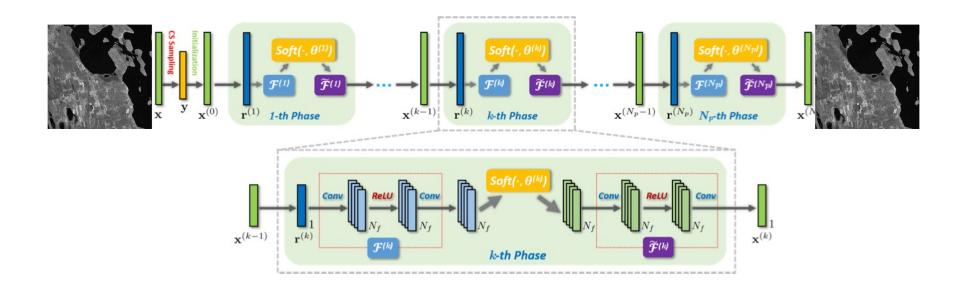
$$TV(\mathbf{X}) = \sum_{i,j} \sqrt{|(\mathbf{X})_{i+1,j} - (\mathbf{X})_{i,j}|^2 + |(\mathbf{X})_{i,j+1} - (\mathbf{X})_{i,j}|^2}$$

 Assumption: image gradient is sparse (image is piece-wise smooth)

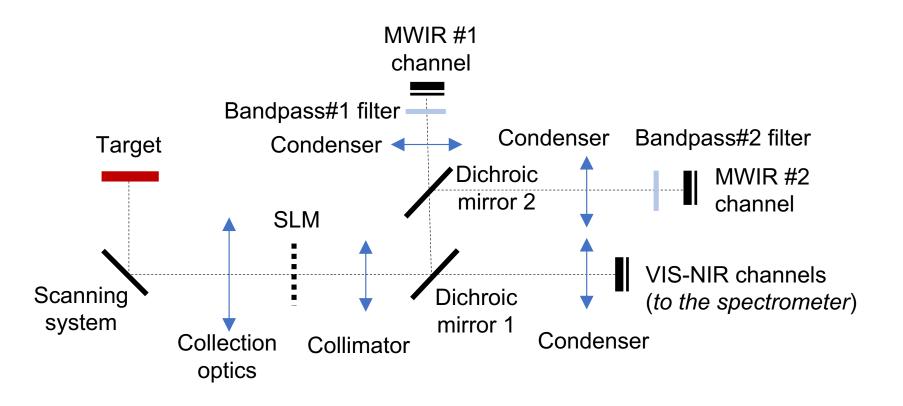
Image reconstruction – deep learning

Instead of solving a complex numerical problem...

...deep learning learns a suitable reconstruction algorithm optimizing the signal representation (e.g., see ISTA-Net algorithm below)



Optical layout



Acquisition model

- Macro-pixels and spectral channels are sensed individually
- For a given spatial position *P* and band *i*:

$$y_i^P = A_i^P x$$

with A_i^P an $m \times n$ matrix

- *m* is the number of measurements
- *n* is the number of micropixels (i.e., the superresolution factor)
- Letting $\alpha \simeq 0$ and $\beta \simeq 1$:

$$\begin{bmatrix} y_{i1}^{P} \\ y_{i2}^{P} \\ y_{i3}^{P} \end{bmatrix} = \begin{bmatrix} \alpha & \alpha & \beta & \beta \\ \beta & \beta & \alpha & \beta \\ \alpha & \beta & \beta & \alpha \end{bmatrix} \begin{bmatrix} x_{i1}^{*} \\ x_{i2}^{P} \\ x_{i3}^{P} \\ x_{i4}^{P} \end{bmatrix}$$

 D_{-}

Full acquisition model

• For the *j*-th measurement:

$$y_{ij}^P = \mathbf{1} H A_{ij}^P x_i^P + \eta_{ij}^P$$

where H is the point spread function (or other linear degradation), and **1** is a vector containing all ones.

Performance – image reconstruction

- Natural images, image size 32x32, binary mask pattern
- Variable block size and amount of compression

M=256, 25% compression				M=512, 50% compression		
Micro-Pixels & Mask	ISTA-Net+ Average PSNR	TVAL Average PSNR		Micro-Pixels & Mask	ISTA-Net+ Average PSNR	TVAL Average PSNR
2×2, 1 mask	29.22	23.56		2×2 , 2 masks	33.38	26.40
4×4, 4 masks	29.11	23.95		4×4, 8 masks	34.12	27.31
8×8, 16 masks	29.93	25.80		8×8, 32 masks	34.88	29.58

Simulation of SURPRISE instrument

- Image size 388x20, block size 4x4, 10 bands
- Spatial resolution: 250 m. Spectral resolution: 40 um
- <u>No</u> re-training or fine-tuning of reconstruction algorithm

Image	Average PSNR	
Argentario_020712	24.20	
Argentario_020914	27.63	
Firenze_021219	32.80	
Firenze_100714	26.54	
SanRossore_120810	31.99	
Umbria100325	30.56	
Venezia_010607	30.77	
Venezia_010607	29.67	

Results on simulated image ("lawn")

• CS ratio 25%, 4x4 mask, PSNR = 29.21 dB

Original

Reconstructed

Results on simulated image ("travertino")

• CS ratio 75%, 32x32 mask, PSNR = 32.79 dB

ISTA-Net

Original

Results on simulated image ("travertino")

• CS ratio 75%, 32x32 mask, PSNR = 29.45 dB

Original

Conclusions

- Deep learning: powerful concept for image reconstruction of a compressive imaging instrument
- Enables super-resolution (final # of pixels > # of detected pixels)
- Very flexible, <u>low</u> complexity
- Also enables compensation of optical degradations in the image reconstruction process
- Also natively enables secrecy (on top of compression)