

EUROPEAN WORKSHOP ON ON-BOARD DATA PROCESSING (OBDP2021), 14-17 JUNE 2021

FPGA BASED LOW LATENCY, LOW POWER STREAM PROCESSING AI

Domenik Helms(1), Mark Kettner(1), Behnam Razi Perjikolaei(1), Lukas Einhaus(2), Christopher Ringhofer(2),

Chao Qian(2), Gregor Schiele(2)

(1) OFFIS, Escherweg 2, 26121 Oldenburg, Germany, Email: first.[second].last@offis.de
(2)University of Duisburg-Essen, Forsthausweg 2, 47057 Duisburg, Germany, Email:first.last@uni-due.de

ABSTRACT

The timing and power of an embedded neural network

application is usually dominated by the access time and
the energy cost per memory access. From a technical

point of view, the hundreds of thousands of look-up

tables (LUT) of a field programmable gate array (FPGA)

circuit are nothing more than small but fast and energy-

efficiently accessible memory blocks. If the accesses to

the block memory can be reduced or, as in our case,

avoided altogether, the resulting neural network would

compute much faster and with far lower energy costs.

We have therefore developed a design scheme that uses

precomputed convolutions and stores them in the LUT
memories. This allows small (mostly one-dimensional)

convolutional neural networks (CNN) to be executed

without block memory accesses: Activations are stored

in the local per LUT registers and the weights and biases

of all neurons are encoded in the lookup tables. Each

neuron is assigned its exclusive share of logic circuits.

This completely avoids the need for memory accesses to

reconfigure a neuron with new weights and allows us to

perform weight optimisations at design time. However, it

limits the applicability of the overall method to

comparatively small neural networks, since we need

several LUTs per neuron and even the largest FPGAs
only provide hundreds of thousands of LUTs.

To make this "in LUT processing" possible, we had to

limit the set of available neural network functions. We

have identified and implemented a set of functions that

are sufficient to make the neural network work, but which

can all be implemented efficiently in an FPGA without

memory access. Our philosophy is that it is better to adapt

the neural network during training to make the best use

of the limited resources available than to try to optimise

the functions in hardware, resulting in a non-limited
neural network.

To realise this design scheme, we developed a set of

design tools, helping the AI designer to convert a given

reference AI in TensorFlow into an equivalent network

of the available hardware functions. Our tools also allow

to finetune the AI to compensate the accuracy loss from

changing the implementation. The two most powerful

optimization techniques we applied are variable bitwidth

quantization and depth-wise separation of convolutions.

In order to demonstrate and evaluate the performance of

our method, we implemented a CNN-based ECG

detection. Our implementation only used 40% of the

available LUTs on the Spartan S15 chip and none of the

block RAM or DSP circuits. The system processed 500

pre-recorded ECGs of 5575 samples in 281ms, using

only 73mJ in total, resulting in 10 million samples per

second and an energy cost of 26.2nJ per sample.

1. INTRODUCTION

Artifical intelligence (AI) technologies crossed the

threshold from interesting object of study to relevant

application almost ten years ago. This is due to three main

reasons: (1) the availability of large amounts of data for

training; (2) new, more efficient algorithms for training

and inference; and (3) new, very efficient hardware

components that can handle the enormous amounts of

data access and computation in little time and with little

power dissipation. Although all three aspects have

evolved even further since then, it is the efficiency of the

hardware that – following Moore's Law – allows the most

significant improvements in AI. To function properly,
different categories of AI applications require different

computational speeds and, more crucially, corresponding

memory access times, as shown in Figure 1.

Power efficiency is fundamentally limited by the energy

cost of computing an arithmetic operation and the energy

cost of accessing and transporting stored information.

With each technology generation this limit still increases

exponentially. Each category of AI application operates

in a certain speed band and accordingly has a certain

minimum power dissipation that makes it applicable to a
certain class of system.

As Figure 1 shows, simple AI applications are possible

today even for edge or IoT applications. Currently,

however, this is only possible if dedicated hardware is

adapted for the simplest AI applications at very low

operating speeds. Furthermore, FPGAs – as they are

currently used as AI accelerators – fall well short of the

technological possibilities due to their high hardware

overhead.

Figure 1 Power efficiency of computations is dictating

the applicability of AI applications (qualitative

visualization)

The main reason for this is that in today's FPGA-based

implementations, the very versatile but also very

complex Look-Up Tables (LUT) are used to realise
mathematical operations or, at best, logical operations.

However, LUT cells are much more powerful and

capable of realising highly efficient AI applications very

close to the technological limit.

Our paper is structured as follows. In the following

chapter, we will review the relevant state of the art in

embedded and edge AI technologies. Afterwards, we will

describe our idea, give some details on the

implementation and report on the initial application’s

performance.

2. RELATED WORK

There are various ideas on how FPGAs can be used to

implement AI algorithms. The two most important

classes so far are the generation of a dedicated, bitwidth-

optimised computing kernel [1] and the efficient

implementation of binary neural networks [2,3].

The key idea of the dedicated kernels is to analyse the

neural network to be implemented in hardware and to

optimize the bitwidth to an unrestricted value. The

OpenVINO synthesis engine for instance, will set up a
computation kernel which is highly optimized to

compute all layers of the AI model to be implemented

one after the other and is implemented in exactly the

required bitwidth.

The key idea for implementing binary neural networks is,

that in the binary form, a multiplication of two values

falls back to a simple Boolean operation (either XOR or

AND), which can be very efficiently implemented in

FPGA. In order to mitigate the accuracy loss, introduced

by the extreme quantization, the network topology can be

enlarged before quantization [4].

Both schemes still require the use of LUT cells, typically

implemented as 32bit or 64bit programmable memory

tables for arithmetic or binary operations. An ASIC

implementation of these topologies could approach the

technology limit in terms of efficiency, but as an FPGA

implementation these ideas still fall far short due to the
overhead of replacing a 6-input gate (typically 12

transistors) with a 64bit 5T SRAM array (>320

transistors) plus additional logic.

As we will describe in the next section, we instead try to

exploit the full potential of these small local memory

arrays. We follow the philosophy of developing

structures that can be efficiently represented in an FPGA

and then using AI training to make the best use of the

available resources.

However, we have to impose strict constraints on the AI

topologies, which have to be compensated for in the

synthesis and training of the AI applications. The

following work describes useful techniques for

implementing such topology constraints with little loss of

system accuracy:

[5] presents the PACT activation function, which

introduces clipping, which normally only occurs during

quantisation for hardware conversion, already during

training. In this way, the unavoidable clipping artefacts

resulting from quantisation can be compensated for or
even exploited during training.

There are many ways of reducing the complexity, in our

case especially the synapses count of a convolutional

layer. One of the most effective ones is depth-wise

separable convolution [6], which is also used in many

high efficiency applications such as MobileNetV2 and

Xception.

Extreme quantisation down to 2 bits must be done as

cleverly as possible to prevent a large loss in accuracy
[7]. A good possibility for this is statistics-aware weight

binning [8], in which statistical moments of the weight

distribution are used to determine the optimal

quantisation levels.

3. CORE IDEA

Our goal is to develop an approach with which small,

simple neural networks can be implemented highly

energy efficiently on an FPGA. In order to do so, we

restrict ourselves to stream processing based problems,

i.e. to one-dimensional convolutional neural networks

(Conv1D). In terms of activation function, we only
support the most common and most simple of them all,

10

100

1000

10000

100000

1000000

0,001 0,01 0,1 1 10 100 1000

lo
g(

sp
ee

d
/G

O
P

s)

log(power/W)

GPU

ASIC

AI
chip

IoT mobile automotive server

1%
duty
cycle

stream
 A

I
visio

n
train

in
g

N
A

S

which is the ReLU function. Besides this, only the one

dimensional pooling and the dense layers are supported,

yet. A Conv1D layer in a stream processing environment

implements the following general equation:

𝑦𝑓(𝑡) = 𝑚𝑎𝑥(0, ∑ ∑ 𝑤𝑖,𝑐,𝑓 ⋅ 𝑥𝑐(𝑡 − 𝑖 ⋅ Δ𝑡) + 𝑏𝑓
𝑁−1
𝑖=0

𝐶−1
𝑐=0)

 (1)

where 𝑦𝑓(𝑡) is the layer’s output vector (one value per

filter) and 𝑥𝑐(𝑡) is the layer’s input vector, which is only

relevant at discrete and equidistant time steps 𝑥𝑐,𝑖 =
𝑥𝑐(𝑡 − 𝑖 ⋅ Δ𝑡). Also 𝑦𝑓(𝑡) is only defined at certain

discrete timesteps 𝑦𝑓,𝑗 = 𝑦𝑓(𝑗 ⋅ Δ𝑡).

3.1. Convolution

Assuming, that the 𝑥𝑐,𝑖 can be quantized to a very low

bitwidth (e.g. 2bit), a push register is a hardware friendly

and convenient complexity reduction, making a hardware

implementing Equation 1 only depending on the recent-

most values 𝑥𝑐(𝑡).

Figure 2: A shift register at the input side simplifies the

Conv1D layer to a series of fully connected neurons.

As presented in Figure 2, the shift register not only takes

over the storage of the older input values, but it also

implements the entire shift and recompute aspect of the

convolutional layer. The remainder to be implemented is
a pure dense layer. Stride values larger than 1 can also be

easily realized by reducing the activation frequency of

the dense part of the system, and thus also reducing the

sampling frequency of the output signals.

3.2. Neuron implementation

In order to implement the dense neurons efficiently and

in a hardware friendly way, we need to apply two steps:

The first step is to strictly reduce the number of inputs to

each neuron. Network topologies with huge input counts

have to be replaced with a tree like structure of neurons,

each with only a fraction of the number of inputs of the

original neuron. Several different methods are available

for such a reduction, but we focus in our work on

depthwise separable convolutions, as shown in Figure 3,

which allows to process the per channel convolution first

(full kernel size, but per one channel) and the per channel

convolution afterwards (kernel size already reduced to 1,
but all channels).

The implementation of the filters is straight forward: For

each filter, a version of the separated neurons is

instantiated, reading from the same push register, but

resulting in a separate output structure (rf. Figure 1,

indicated in green for filter 0 and orange for filter 1).

Figure 3: Depthwise separable convolution reduces the

number of inputs per neuron

In the second step, which is the core idea of the entire

methodology, we exploit the low bitwidth of the input

and output signals and the low number of inputs and thus

the finite amount of possible input combinations: Instead

of actually implementing a series of low bitwidth

multiplications, we precompute the per neuron output for
all possible input states, downsample them to the output

bitwidth ny and store them in a number of look-up tables.

For a neuron with N inputs of nx bit input width and ny

bit output width, we can precompute the function

𝑦 = 𝑚𝑎𝑥(0, ∑ 𝑤𝑖 ⋅ 𝑥𝑖 + 𝑏𝑁−1
𝑖=0) (2)

as an 𝑛𝑦 bit value for all 2𝑁⋅𝑛𝑥 possible input states,

requiring 𝑛𝑦 ⋅ 2𝑁⋅𝑛𝑥 bit of memory, or 𝑛𝑦 ⋅ 2𝑁⋅𝑛𝑥−6 recent

FPGA look up tables. Such a structure is referred to as an

n-to-m cell with 𝑛 = 𝑁 ⋅ 𝑛𝑥 the number of overall input

bits and m the number of output bits (rf. Figure 4 left).

The major advantage of this approach in comparison to

all other approaches is, that it allows the weights and
biases to remain real values. Only the input- and output

values have to be quantized, which allows for quick and

easy training, avoiding techniques such as straight

through estimators [9].

Additionally, it is not even needed to interpret the

quantized inputs as integer values or round the output

values to integer values, but instead each of the possible

x0,0

x1,0

x0,1

x1,1
…

n·C push registers of
length N

Σ

b1

ReLU

Σ
·w0,0,0

b0

ReLU
·w0,0,1

·w1,0,1

·w0,1,1

·w1,1,1

·w0,2,1

F neurons with C·N+1
inputs

n-bit sampled
version of C

channels xc(t)

F output signals
yf(t)

…

x0,0

x1,0

x0,1

x1,1

Σ

bf

ReLU

x0,2

x1,2

x0,0

x1,0

x0,1

x1,1 Σ

b1,f

ReLU

x0,2

x1,2

Σ

b0,f

ReLU

Σ

bf

ReLU

input- and output-states can code one arbitrary real value,

allowing the much more powerful codebook quantization

[10] for zero-effort.

3.3. Pooling

An optional max or average pooling layer can be

implemented by yet another push register in combination

with either a low bitwidth summation operation for

average pooling or a max function for maximum pooling

(rf. Figure 4 right).

Both, a stride larger than 1 as well as a pooling effectively

result in a frequency reduction of the signal to be

analysed, which then leads to a lower power consumption

of the respective hardware blocks, as they operate and

thus switch and thus dissipate energy less frequently.

A much more relevant aspect of this frequency reduction

is, that each value of the later, lower frequency layers

represents a larger interval of time. Due to the restrictions

in the input number for synapses, it is not feasible, to do
a very long convolution in order to observe features,

occurring on a much larger timescale than the sampling

frequency. Even with depthwise separation, the kernel

size is limited to 𝑁 ≈ 10 for binary (𝑛𝑥 = 1) and 𝑁 ≈ 5

for 2bit values (𝑛𝑥 = 2), as otherwise, the LUT count for

the (𝑁 ⋅ 𝑛𝑥)-to-𝑛𝑦 block would rise exponentially.

Thus, for an input signal entering with a sampling

frequency of 𝑓𝑠, the initial convolution layer can only

observe a timeframe 𝑁/𝑓𝑠 . Each stride or pooling size

multiplies this time so that single values in the later layers

can represent arbitrarily large time intervals.

Figure 4 left: The separated sub-neurons can be

represented as n-to-m lookup tables. Right: A push

register and a sum (or max) function implement an

average (or maximum) pooling.

4. SYNTHESIS AUTOMATIZATION

The principles presented above allow to design small AI

systems on FPGA in an exclusive and memory free way:

As each logical neuron is realized as some explicit and

exclusive hardware, i.e. a few LUT cells somewhere on

the chip, it is possible for the weights and biases to

permanently remain coded implicitly into the LUT cell’s

configuration. The activations are passed from layer to

layer through the configurable metal connections of the

FPGA and they are stored between the layers in local

registers. Thus, at no point is it necessary to read or write

any kind of data from or to the block RAM of the FPGA.

This allows for extremely high sampling rates to be

processed, as all computations are done in parallel.

Additionally, this also allows neural network execution

at very low energy per computation costs.

In typical AI implementations, inference time as well as

energy costs are dominated by the time and energy costs

for memory accesses. Optimizing hardware execution of

neural networks usually means reorganization of the

execution in order to reduce memory accesses or to

replace a global memory access by a more local one,

exploiting the various memory hierarchies. In this

approach we have taken this to the extreme by completely

shifting the weights and bias storage from the main

memory into the tens of thousands local 64bit storages,
the LUT cells are. Storing activations is shifted even

further from the main memory into the registers of the

FPGA.

As a drawback, the resulting structure is extremely hard

to program, requiring the usage of a hardware description

language and the translation of millions of training

parameters from a training framework into parameters of

the hardware description itself.

In order to make this idea applicable, we thus had to

automate the transition from a trained model in a high-
level AI framework such as TensorFlow into a

configuration bitfile for the FPGA without the need of

manual processing in between.

4.1. Network simplification

We started with defining a list of valid TensorFlow layers

(the LUTNet library), for which a hardware efficient

FPGA implementation is possible. For our first

demonstrator, we limited ourselves here to the one-

dimensional convolution and the pooling as described

above as well as a batch normalization layer, several
implementations of dense layers and a few variations of

the convolution layer.

The designer can then train and evaluate a reference

model, still computing on float values and test and try

different configurations, trying to maximize accuracy

and/or efficiency. Afterwards the designer can initiate an

automated variable quantization and a depthwise

separation of the convolution.

The final simplified TensorFlow model can be tested and

if necessary updated. The extreme quantization is
represented in Tensorflow by customized and

x0,0

x1,0

x0,1

x1,1

x0,2

x1,2

6-to-3

2

yf,j

yf,j-1

yf,j-2

yf,j-3

6-to-3

6-to-2

2

2 2

2

2

2

3

3

Σ

1 depthwise separable neuron per filter ny-bit push register avg. pooling

configurable activations, representing the effects of

quantization in TensorFlow. The final network can then

be translated into our hardware independent intermediate

description language, called macro transfer language

(MTL).

MTL can be simulated in our tool flow to determine if the

current neural network will meet all resource constraints.

Otherwise, the user can adapt the reference model, restart

the conversion flow and recheck if the hardware
requirements are met.

Once this step is converged, the MTL together with pre-

implemented hardware templates for each valid layer in

the LUTNet library can be send to the final tool we

developed, which is a VHDL code generator. This

generator is combining and configuring the library

templates using the structure and parameters described in

the MTL into a fully pipelined VHDL hardware

description of the neural network. From there the design

can be handed over to a standard FPGA design tool such
as Xilinx Vivado.

5. EXAMPLE APPLICATION

In order to test the methodology and to assess the

resulting hardware, we applied it to a medical application

which was part of the national KI-Sprung challenge [11],

where the task was to detect artefacts in a stereo 500Hz

16bit ECG signal.

The demonstrator uses a reference neural network

consisting of the following sequence of layers:

- a regular (not separated) CONV1D as input layer
- a one-dimensional max pooling layer

- three depth-wise separated CONV1D layers

- a one-dimensional max pooling layer

- one depth-wise separated CONV1D layer

- a one-dimensional max pooling layer

- a final dense classifier

This neural network was described in TensorFlow, then

trained using a quantization-aware training scheme, and

finally evaluated. The final AI model is then translated

into MTL and finally synthesized into a bitfile for the
Spartan 7 S15 FPGA in 28nm technology.

The final design uses 2155 LUT cells, which is 26% of

all available LUTs as well as 7.6% of the available Flip-

Flops. An additional 14% of LUTs is used to interface

with the environment of the FPGA.

The final system was able to detect over 90% of all

artefacts in the ECG data and could infer a total of 2.8

million samples in 0.28s while consuming 258mW of

power of which one quarter (63mW) is due to a flash

buffer, which is used to process the low frequency input
data in bursts.

In a high frequency application, the same system would

be able to apply a six layer neural network on a 10 MHz

stereo input signal, only dissipating 182mW.

In this low frequency scenario, the system is working in

bursts, duty cycling in between and needs only 26nJ of

energy for a complete inference.

For comparison, recent low power AI accelerators such
as the Intel Neural Compute Stick 2 (16nm technology

node) ranks around 2W/Tops, which translates to 2fJ per

operation. In conventional hardware, our neural network

would need roughly 30,000 operations to perform and

thus would need 60nJ per inference, but admittedly in 16

bit, instead of 2-3 bit.

6. CONCLUSION

In this paper, we presented a radically new scheme for

using FPGAs for AI inference. We showed that our

implementation can keep pace with highly optimized AI
accelerators having two generation better technology.

There are still many open issues in our flow that we can

use to further optimize produced neural networks. First,

we used the smallest available FPGA and still only

needed a quarter of it for our network. Thus, there is a

huge potential for much larger applications and

redundant components, which we will focus on in future

work.

Additionally, there are the block RAM and DSP cells,

completely unused so far, which could be used for
instance for a high bitwidth input layer, a high bitwidth

dense classifier or a single unconstrained 1D or 2D

convolution layer. These would increase the accuracy

and applicability of this approach a lot.

Finally, if reconfigurability in field is not necessary, the

VHDL file, describing the inference engine could of

course also be synthesized into a full custom ASIC chip.

Such a device, even though having high development

cost, would by far outperform any available AI

accelerator hardware in terms of inference speed and
efficiency. Using radiation hardened Flip-Flops it would

also be a good candidate for Aeronautic and Space

applications as an ASIC implementation would be

completely memory-free.

ACKNOWLEDGEMENTS

The authors acknowledge the financial support by the

Federal Ministry of Education and Research of Germany

in the KI-Sprung framework (project number

16ES1124K).

REFERENCESS

[1] Intel OpenVINO framework.

https://docs.openvinotoolkit.org/latest/openvino_d

ocs_IE_DG_supported_plugins_FPGA.html, 2020.

[2] Corey Lammie, Wei Xiang, Mostafa Rahimi

Azghadi: Training Progressively Binarizing Deep

Networks using FPGAs, ISCAS 2020.

[3] E. Wang, J. J. Davis, P. Y. K. Cheung, G. A.

Constantinides: LUTNet: Rethinking Inference in

FPGA Soft Logic. FCCM, 2019.
[4] Xiaofan Lin, Cong Zhao, Wei Pan: Towards

Accurate Binary Convolutional Neural Network.

arXiv:1711.11294, 2017.

[5] Jungwook Choi, Zhuo Wang, Swagath

Venkataramani, Pierce I-Jen Chuang,

Vijayalakshmi Srinivasan, Kailash Gopalakrishnan:

PACT: parameterized clipping activation for

quantized neural networks. arXiv:1805.06085v2,

2018.

[6] L. Bai, Y. Zhao, X. Huang: A CNN Accelerator on

FPGA Using Depthwise Separable Convolution.
doi: 10.1109/TCSII.2018.2865896.

[7] D. Helms, K. Amende, S. Bukhari, T. de Graaff, A.

Frickenstein, F. Hafner, T. Hirscher, S. Mantowsky,

G. Schneider, M.-R. Vemparala: Optimizing Neural

Networks for Embedded Hardware. SMACD 2021

[8] Jungwook Choi, Swagath Venkataramani,

Vijayalakshmi Srinivasan, Kailash Gopalakrishnan,

Zhuo Wang, Pierce Chuang: Accurate and efficient

2-bit quantized neural networks. MLSys 2019.

[9] Penghang Yin, Jiancheng Lyu, Shuai Zhang,

Stanley Osher, Yingyong Qi, Jack Xin:

Understanding Straight-Through Estimator in
Training Activation Quantized Neural Nets.

arXiv:1903.05662, 2019.

[10] S. Han, H. Mao, and W. J. Dally: Deep

compression: Compressing deep neural networks

with pruning, trained quantization and Huffman

coding. ICLR 2016.

[11] https://www.elektronikforschung.de/projekte/ki-

sprung

https://docs.openvinotoolkit.org/latest/openvino_docs_IE_DG_supported_plugins_FPGA.html
https://docs.openvinotoolkit.org/latest/openvino_docs_IE_DG_supported_plugins_FPGA.html
https://www.elektronikforschung.de/projekte/ki-sprung
https://www.elektronikforschung.de/projekte/ki-sprung

