
MODEL MANAGEMENT SERVICE: A CUSTOM PUS SERVICE FOR FLEXIBLE
HANDLING OF MACHINE LEARNING MODELS ON BOARD SPACE SYSTEMS

Karen Scholz and Jan-Gerd Mess

Institute of Space Systems, German Aerospace Center (DLR e.V.), Robert-Hooke-Str. 7, 28359 Bremen, Germany

ABSTRACT

The use of Artificial Intelligence (AI) and Machine
Learning (ML) in space missions has become a popu-
lar approach to make spacecrafts act more autonomously.
Increasing autonomy is required since communication
bandwidth and the availability of ground stations is lim-
ited and missions get more and more complex and re-
active. Many approaches for implementing system au-
tonomy rely on Deep Neural Networks (DNNs) due to
their achievements in the past years in several applica-
tion domains that formerly required human-level intelli-
gence. The basic mathematical operation in DNNs is the
matrix multiplication. Weight matrices are consecutively
applied to the input data, in order to produce a prediction.
DNNs may have multiple thousands or even millions of
weights. However, there exists no standardized interface
that enables to upload ML models and their weights to
embedded systems on spacecraft. Our approach aims to
deploy arbitrary ML models including neural networks to
space systems using the well-established Packet Utiliza-
tion Standard (PUS) (cf. ECSS-E-ST-70-41C). There-
fore, we extended our Open modUlar sofTware PlatfOrm
for SpacecrafT (OUTPOST) which is available as Open
Source software with a custom PUS service for dynam-
ically loading and executing trained and validated ML
models that were implemented using TensorFlow and
TensorFlow Lite by Google.

1. INTRODUCTION

The use of AI and ML in space missions has become
a popular approach, to make spacecrafts act more au-
tonomously. Increasing autonomy is required since com-
munication bandwidth and the availability of ground sta-
tion contact is limited. It is recognized that increasing au-
tonomy also increases reliability, whereas the operational
effort is reduced and may also yield detection of science
opportunities.
In addition to traditional ML algorithms, DNNs are in-
creasingly applied to space applications [1]. However,
these algorithms usually run on ground processing data
generated onboard the spacecraft and transmitted via
downlink. The basic mathematical operation in DNNs

is the matrix multiplication. Weight matrices are con-
secutively applied to the input data, in order to produce
a prediction. During a training phase the weight matri-
ces are adapted, such that the model is suitable for its
task. The required training data increases with the num-
ber of weights. DNNs may have multiple thousands or
even millions of weights, which makes them computa-
tionally expensive. For example, MobileNetV2, a deep
neural network for image processing tasks developed to
run on mobile and embedded devices, has about 3.4 mil-
lion weights [2].
Several optimization techniques have been developed, in
order to reduce the size and computational cost of DNNs
[3]. This and the deployment of multi-core processors
enables to run DNNs onboard spacecrafts [4]. However,
most optimization techniques are applied after training,
such that the training process remains computational ex-
pensive. Therefore, and to validate the trained models as
far as possible, ML models are usually trained and val-
idated on ground and deployed to the embedded system
afterwards. However, there exists no standardized inter-
face that enables to load ML models on embedded sys-
tems on spacecrafts.
Our approach aims to deploy arbitrary ML models in-
cluding neural networks to space missions using the
Packet Utilization Standard (PUS, cf. ECSS-E-ST-70-
41C). Therefore, we extended our Open modUlar sofT-
ware PlatfOrm for SpacecrafT (OUTPOST), which is
available as open source software, with a custom PUS
service for dynamically loading and executing trained
and validated ML models generated by TensorFlow Lite.
The custom PUS service enables to upload and remove
models from the spacecrafts and update them by other
versions. The service further enables to execute models
in an event-triggered fashion and makes the prediction
results accessible for other components of the flight soft-
ware.

The paper unfolds as follows:

Section 2 describes approaches and experiments from lit-
erature similar to or relevant for our work. In section
3, the general idea behind and the design of our custom
PUS service and its workflow using Google’s TensorFlow
(Lite) is presented. Section 4 is about the service’s imple-
mentation details in the OUTPOST library. In section 5,
we describe the planned future validation and verification
efforts to bring the new service into operation. Finally,



section 6 concludes the paper.

2. RELATED WORK

Several machine learning models have been deployed for
onboard data analysis. In [5], Support Vector Machine
(SVM) classifiers were trained in order to detect sulfur
on images of Earth’s surface by segmenting pixels show-
ing sulfur, ice and rocks. The system was supposed to
be deployed on the Earth Observing One (EO-1) space-
craft. The images were obtained from the Hyperion in-
strument, a hyperspectral imager onboard the EO-1, gen-
erating 220 bands of hyperspectral data. Due to limita-
tions regarding the EO-1 processor, at most 12 of the 220
spectral bands were possible to be used for classification
purposes. Therefore, feature selection techniques were
applied in order to identify the 12 spectral bands leading
to the best classifier performance. The authors trained lin-
ear SVMs and compared them with SVMs using a gaus-
sian kernel. The best gaussian kernel SVM achieved a
mean F-score of 0.93 in comparison to a mean F-score
of 0.9 achieved by the linear SVM. However, the es-
timated runtime of a gaussian kernel SVM onboard the
EO-1 spacecraft exceeded the estimated runtime of a lin-
ear SVM by a factor of more than 24, rendering the gaus-
sian kernel SVM unsuitable for deployment onboard the
EO-1 spacecraft.

A Random Forests classifier was deployed in [6] to the In-
telligent Payload Experiment (IPEX) spacecraft, a cube-
sat, for realtime onboard cloud detection from image
data. The classifier was trained on ground on images ob-
tained from a prototype camera onboard a high-altitude
balloon, since images from the IPEX cameras were not
available during development. The IPEX spacecraft was
sent into Low Earth Orbit (LEO) with the pretrained clas-
sifier installed. Updating the classifier during the mission
was assumed to be infeasible due to the limited uplink
bandwidth. In order to reduce computational cost, the
classifier was configured to work on every fourth pixel.
The remaining pixels were classified by interpolating be-
tween the classified pixels. The IPEX spacecraft used the
planning sytem CASPER, which manages resources and
handles requests in a priority based fashion enabling re-
altime classifier execution.

According to [1], also deep learning is increasingly used
for space data analysis and applications. In [7], a concept
for deploying DNNs on an Earth Observation (EO) satel-
lite to classify images based on their content is proposed.
The authors state that the classification results might be
used to filter out informative images from noisy or mean-
ingless images, in order to reduce downlink bandwidth
when images are sent to ground. The images will be ob-
tained by an imager onboard the satellite. A Field Pro-
grammable Gate Array (FPGA) shall interface the imager
and store the raw images in memory. The images shall
then be processed by the classifier enriching the image
data with additional metadata based on its content. The
authors mention that due to the research in how DNNs

can be reduced in size while losing only little predic-
tion performance, it will be possible to train DNNs on
ground and transmit them to the spacecraft via uplink. It
is planned to implement the proposed concept on board
the EO satellite HyperScout 2 which is, in addition to a
Central Processing Unit (CPU), equipped with a Graph-
ics Processing Unit (GPU) and a Vision Processing Unit
(VPU).

3. BASIC CONCEPTS AND METHODS

The typical workflow for deploying DNN consists of
finding the right network structure and/ or cell type for
the problem. While some rules of thumb exist, typically,
this involves some trial and error. For this, the available
data is split into multiple sets for training, testing and val-
idation. The training data is used to train the candidate
network. The candidate is then checked for performance
using the validation set. This is done to test the general-
ization capabilities of the model when it has to deal with
unknown data.

Once a suitable architecture has been found and all the
so-called hyperparameters are tuned, the the performance
is checked against the test set. This step is necessary to
avoid that the network indirectly learns from the valida-
tion set through its structure and parameters. After this,
the model can be applied and - given it performs ade-
quately - is ready for operation. This workflow is de-
picted in Figure 1.

TensorFlow by Google [8] provides an accessible way
of quickly setting up the necessary infrastructure for the
described process. APIs are available for Python and
JavaScript as well as - less documented - C++, all of
which are, however, not suitable for embedded systems.
This is due to the fact that it is optimized for the data-
, memory- and runtime-intensive task of training and
validation in small to very large networks that are typi-
cally executed on special workstations including power-
ful GPUs instead of conservative space systems.

When it comes to the inference step, which is the most in-
teresting part of the process for deployment, a dedicated
library calld TensorFlow Lite allows execution on 32-bit
embedded systems. In order to transfer models to an em-
bedded system, standard TensorFlow models can be con-
verted to their TensorFlow Lite equivalent and then seri-
alized using FlatBuffers, a serialization library that was
also developed by Google. This step is depicted in the
left part of Figure 2. The TensorFlow Lite engine can
then perform inference using these models by reading the
serialized FlatBuffer, building up the computational tree
and executing it using input variables of the embedded
system.

For space systems, the problems of upload, on-board
management of existing models and the interconnection
to other components of the Flight Software (FSW) re-
main. In order to overcome these, the following section



Figure 1. Typical ML process

describes our design of a Model Management Service for
on-board handling of arbitrary models using TensorFlow
and TensorFlow Lite as an exemplary execution engine.

4. IMPLEMENTATION

The typical process of ML starts with training a created
model. According to the literature presented in section
2, models are usually trained on ground, before they are
deployed to a spacecraft. As mentioned in [7], this is mo-
tivated by practical reasons: On the one hand when train-
ing is performed on ground, high-performance process-
ing units such as GPUs can be used, since model train-
ing can be computationally expensive, and on the other
hand, synthesized training data can be used to overcome
the problem of missing real mission data. Additionally,
more extensive validation and verification of the result-
ing model can be conducted before the upload, greatly
reducing operational risks.

Figure 2 shows the resulting process of loading and ex-
ecuting an ML model on board a spacecraft using the
Model Management Service, which is based on the afore-
mentioned considerations. Currently, the Model Man-
agement Service is limited to models generated with
TensorFlow Lite, since TensorFlow Lite benefits from
the Google’s TensorFlow ecosystem, is easily accesible
through its Python implementation and directly provides
all the necessary tools for creating a serialized represen-
tation of the model i.e. the FlatBuffer, which can be
transmitted via uplink, while also reducing the required
memory space. First, the model is trained and validated
on ground using TensorFlow. Afterwards the model is
converted using TensorFlow Lite into the TensorFlow
Lite FlatBuffer, which is enriched with further model at-
tributes required for serialization and execution on em-
bedded systems. The resulting serialized model represen-
tation is then transmitted to the spacecraft by the Model
Management Service via uplink. The Model Manage-
ment Service stores the serialized model representation
in memory. Currently, models are held in volatile Ran-
dom Access Memory (RAM) which is likely to be re-
placed by storage in a permanent file system at a later
stage. When an application queries the model, the seri-

alized model representation is deserialized and a predic-
tion is performed. The process of loading and storing the
model onboard the spacecraft as well as the process of
triggering model execution and publishing results is de-
scribed in detail in sections 4.1 and 4.2, respectively.

4.1. Model Management

Onboard the spacecraft, the serialized model representa-
tions are stored in memory slots. A memory slot is an
abstraction of a preallocated block of memory of fixed
size. Since available resources might vary according to
the mission, the number of memory slots and their size
can be configured with respect to the target system dur-
ing compile time. Each memory slot is assigned a unique
id for identification purposes. When loading a model on-
board the spacecraft, the memory slot the model should
be stored in, is specified. The Model Management Ser-
vice ensures that the specified memory slot is available
(i.e. not occupied by some other model) and appropri-
ately sized to store the model.

Oftentimes, training and validation data generated within
a comparable mission is not available during develop-
ment. The authors in [6] obtained training and validation
data from a prototype camera onboard a high-altitude bal-
loon. However, some lightning conditions were not cap-
tured in the data leading to a poor model performance
on these lightning conditions. This indicates the need
to retrain a model during the mission using real mission
data. Therefore, the Model Management Service pro-
vides an update mechanism, which enables to overwrite
a model by another version of the model. A model’s
version is specified within the model’s meta data during
upload. This facilitates versioning between ground and
space segment and allows for future referencing of de-
commissioned models.

4.2. Inter-component Communication and Event-
triggered Model Execution

In contrast to the simplified Figure 2, there might be more
than one application providing input data to a model and



Figure 2. Process of loading and executing an ML model onboard a spacecraft using the Model Management Service

querying for prediction results. Also, the applications
providing input data and the applications querying for
prediction results might be different ones. Additionally,
update rates are likely to vary from parameter to param-
eter and may not correspond to the desired rate of pre-
dictions by an ML model. To ensure a loose coupling
between the Model Management Service and the applica-
tions generating parameter values or working on the re-
sults while still providing the possibility of implementing
”sytem-wide” models, the Model Management Service
makes use of the OUTPOST parameter store. The pa-
rameter store can be seen as a database, which assigns an
unique identifier to each stored parameter, under which
the parameter can be accessed for reading (only the pa-
rameter’s owner application typically has write access).
Due to the parameter store, the exchange of data between
the applications and the Model Management Service is
reduced to read and write operations. Figure 3 visualizes
the processes of how applications and sensors onboard
exchange data with the Model Management Service via
the parameter store.

First, an application generates new data (status informa-
tion, sensor readings, etc.) that may, in term, trigger ex-
ecution of a certain model managed by the Model Man-
agement Service. The application writes the generated
data to the parameter store. The Model Management
Service can now be triggered by mechanisms defined
in the PUS, including but not limited to event genera-
tion (Event-Action Service) or periodic scheduling. The
Model Management Service obtains the serialized model
representation from the corresponding memory slot and
deserializes the model. It then reads the input data from
the parameter store and executes the model. The gen-
erated prediction data is written back at fixed ids to the
parameter store. The parameter ids are known to the
Model Managment Service, since they are comprised in
the model attributes. All applications interested in the
prediction results are then able to receive them by reading
the data from the parameter store (again, through event

generation or periodic scheduling).

5. VALIDATION AND VERIFICATION

It is well recognized that validation and/ or verification
of neural networks is a crucial topic, especially in safety-
critical systems like spacecraft, let alone manned space
systems. The demonstrated approach, however, does not
only deal with ML models, but also the 3rd-party li-
brary TensorFlow (Lite) by Google, that was originally
not designed for safety-critical systems. Finally, the self-
implemented custom PUS service and the surrounding
ecosystem for memory management and model handling
need verification. We deal with these entities individually
in the following sections.

5.1. Verification of ML models

Due to their potentially large number of (trainable) pa-
rameters and blackbox character, neural networks render
traditional verification approaches intractable and are es-
pecially difficult to validate. Since this paper deals only
with the operation and application of ML models in space
systems rather than their design and training, laying out a
complete process for verification is out of scope. Poten-
tial approaches include but are not limited to reachability
analysis using simplifying representations [9], exploiting
piecewise linearity of certain classes of neural networks
and taking insights through approaches like Satisifiability
Modulo Theory [10] or over-approximation by reducing
the network’s size to make it amenable [11].



Figure 3. Exchange of data between onboard applications, sensors and the Model Management Service using the param-
eter store

5.2. Verification of 3rd-party libraries

Verfiation of 3rd-party libraries for safety-critical appli-
cations is always causing a lot of effort because it in-
volves working through an unknown codebase (if avail-
able) or exhaustive blackbox-testing of the library’s API.
This is especially true for big libraries involving highly
optimized, complex mathematical operations such as
TensorFlow (Lite) that were orignally not meant for
safety-critical systems.

Again, a complete discussion of the topic is beyond scope
and extent of this paper. However, a few approaches in-
clude but are not limited to the following:

In [12], an interface-grammar describing the library’s be-
haviour is used as input for a static control, dataflow and
alias analysis.
The authors of [13] are applying the Coq proof-assistant -
typically used for assistance in mathematical proofs - for
reasoning on software correctness.
In [14], a complete framework for software verification
is presented that splits the process of verification in the
individual steps of pre- and post-condition inference for
functions, stub inference for abstraction outside the veri-
fication scope and automatic refinement of conditions to
avoid false alarms.

5.3. Planned IOV of the custom PUS service

In order to bring the Model Management Service into or-
bit, we follow a series of steps for graceful validation, not
only tthe service but also ML in general. Therefore, we
first deploy the system in a minimal example to develop-
ment boards, potentially STM32 or Zynq based on ARM

Cortex-M and Cortex-A processors or our own Software
Development Model (SDM) (i.e. breadboard) based on
Leon3. On successful execution of these tests, the ser-
vice can be integrated in the FSW of our Eu:CROPIS
compact satellite. Using the satellite’s Ground Reference
Model (GRM), the service can safely be tested for sta-
bility, usability as well as performance in the context of
operational FSW. Finally, the service can be uploaded
to orbit to the Eu:CROPIS satellite currently in its ex-
tended mission for In-Orbit Verification (IOV). It should
be noted that no actual control shall given to any ML
model but rather use them as an observer of the system
state (or rather subsets thereof) looking for anomalies and
reporting its findings to ground.

6. CONCLUSION

In this paper, we have discussed a custom PUS service for
spacecraft that handles ML models by providing capa-
bilities for upload, on-board memory management, ver-
sioning but also their inference on on-board parameters
that can be triggered both automatically as well as man-
ually. The service is implemented in DLR’s software li-
brary OUTPOST and consequently integrates well with
existing FSW as well as future developments.

While leaving out evidently important topics such as ver-
ification of 3rd party libraries and ML models in general
for now, we are convinced that this work paves the way
for applying methods of AI and ML on-board spacecraft
by providing a ”standardized” way of handling models
and providing access to the software system.



REFERENCES

[1] Dario Izzo, Marcus Märtens, and Binfeng Pan. A
survey on artificial intelligence trends in spacecraft
guidance dynamics and control. Astrodynamics,
3(4):287–299, 2019.

[2] Mark Sandler, Andrew Howard, Menglong Zhu,
Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bileNetV2: Inverted Residuals and Linear Bottle-
necks. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages
4510–4520, 2018.

[3] Nesma M. Rezk, Madhura Purnaprajna, Tomas
Nordström, and Zain Ul-Abdin. Recurrent Neural
Networks: An Embedded Computing Perspective.
IEEE Access, 8:57967–57996, 2020.

[4] Vivek Kothari, Edgar Liberis, and Nicholas D.
Lane. The Final Frontier: Deep Learning in Space.
In Proceedings of the 21st International Workshop
on Mobile Computing Systems and Applications,
pages 45––49, New York, NY, USA, 2020. Asso-
ciation for Computing Machinery.

[5] Lukas Mandrake, Umaa Rebbapragada, Kiri L.
Wagstaff, David Thompson, Steve Chien, Daniel
Tran, Robert T. Pappalardo, Damhnait Gleeson, and
Rebecca Castaño. Surface Sulfur Detection via Re-
mote Sensing and Onboard Classification. ACM
Trans. Intell. Syst. Technol., 3(4), 2012.

[6] Alphan Altinok, David R Thompson, Benjamin
Bornstein, Steve A Chien, Joshua Doubleday, and
John Bellardo. Real-Time Orbital Image Anal-
ysis Using Decision Forests, with a Deployment
Onboard the IPEX Spacecraft. Journal of Field
Robotics, 33(2):187–204, 2016.

[7] Gianluca Furano, Antonis Tavoularis, and Marco
Rovatti. AI in space: applications examples and
challenges. In 2020 IEEE International Symposium
on Defect and Fault Tolerance in VLSI and Nan-
otechnology Systems (DFT), pages 1–6, 2020.

[8] TensorFlow official web page. http://www.
tensorflow.org. Accessed: 2021-06-13.

[9] Hoang-Dung Tran, Xiaodong Yang, Diego Man-
zanas Lopez, Patrick Musau, Luan Viet Nguyen,
Weiming Xiang, Stanley Bak, and Taylor T. John-
son. Nnv: The neural network verification tool for
deep neural networks and learning-enabled cyber-
physical systems. In Computer Aided Verification,
pages 3–17, Cham, 2020. Springer International
Publishing.

[10] Rudy Bunel, Ilker Turkaslan, Philip H. S. Torr,
Pushmeet Kohli, and M. Pawan Kumar. A unified
view of piecewise linear neural network verifica-
tion. Proceedings of the 32nd International Con-
ference on Neural Information Processing Systems,
2018.

[11] Yizhak Yisrael Elboher, Justin Gottschlich, and Guy
Katz. An abstraction-based framework for neural
network verification. In Computer Aided Verifica-
tion, pages 43–65. Springer International Publish-
ing, 2020.

[12] Marcus Mews and Steffen Helke. Towards static
modular software verification. In Stefan Jähnichen,
Bernhard Rumpe, and Holger Schlingloff, editors,
Software Engineering 2012. Workshopband, pages
147–153. Gesellschaft für Informatik e.V., 2012.

[13] Christine Paulin-Mohring. Introduction to the Coq
Proof-Assistant for Practical Software Verification,
pages 45–95. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2012.

[14] Franjo Ivančić, Gogul Balakrishnan, Aarti Gupta,
Sriram Sankaranarayanan, Naoto Maeda, Hiroki
Tokuoka, Takashi Imoto, and Yoshiaki Miyazaki.
Dc2: A framework for scalable, scope-bounded
software verification. In 2011 26th IEEE/ACM In-
ternational Conference on Automated Software En-
gineering (ASE 2011), pages 133–142, 2011.


